The Preparation of Prussian Blue in a Mortar: An Example to Teach Sustainable Chemistry with Mechanochemical Reactions
Abstract
:1. Introduction
“Mechanically induced solid-state chemical reactions can be performed completely without solvents. Ideally, by-products disappear via the gaseous phase. As a consequence, solid-state mechanochemistry is an attractive alternative to classical, solvent-based syntheses routes and can be regarded as green chemistry”[2].
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Michalchuk, A.A.L.; Boldyreva, E.V.; Belenguer, A.M.; Emmerling, F.; Boldyrev, V.V. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name? Front. Chem. 2021, 9, 685789. [Google Scholar] [CrossRef] [PubMed]
- Scholz, G. Mechanochemistry of fluoride solids: From mechanical activation to mechanically stimulated synthesis. ChemTexts 2021, 7, 16. [Google Scholar] [CrossRef]
- Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 2013, 42, 7649–7659. [Google Scholar] [CrossRef] [PubMed]
- Colacino, E.; Isoni, V.; Crawford, D.; Garcia, F. Upscaling Mechanochemistry: Challenges and Opportunities for Sustainable Industry. Trends Chem. 2021, 3, 335–339. [Google Scholar] [CrossRef]
- Zuin, V.G.; Eilks, I.; Elschami, M.; Kümmerer, K. Education in green chemistry and in sustainable chemistry: Perspectives towards sustainability. Green Chem. 2021, 23, 1594–1608. [Google Scholar] [CrossRef]
- Ardila-Fierro, K.J.; Hernandez, J.G. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem 2021, 14, 2145–2162. [Google Scholar] [CrossRef]
- Berry, D.E.; Carrie, P.; Fawkes, K.L.; Rebner, B.; Xing, Y. The Mechanochemical Reaction of Palladium(II) Chloride with a Bidentate Phosphine. J. Chem. Educ. 2010, 87, 533–534. [Google Scholar] [CrossRef]
- Wixtrom, A.; Buhler, J.; Abdel-Fattah, T. Mechanochemical Synthesis of Two Polymorphs of the Tetrathiafulvalene-Chloranil Charge Transfer Salt: An Experiment for Organic Chemistry. J. Chem. Educ. 2014, 91, 1232–1235. [Google Scholar] [CrossRef]
- Colacino, E.; Dayaker, G.; Morère, A.; Friščić, T. Introducing Students to Mechanochemistry via Environmentally Friendly Organic Synthesis Using a Solvent-Free Mechanochemical Preparation of the Antidiabetic Drug Tolbutamide. J. Chem. Educ. 2019, 96, 766–771. [Google Scholar] [CrossRef]
- Pfaff, G. Iron blue pigments. Phys. Sci. Rev. 2021, 6, 131–135. [Google Scholar] [CrossRef]
- Kraft, A. What a chemistry student should know about the history of Prussian blue. ChemTexts 2018, 4, 16. [Google Scholar] [CrossRef]
- Kohn, M. Demonstration of Some Properties of Prussian blue. J. Chem. Educ. 1943, 20, 198. [Google Scholar] [CrossRef]
- Bonnette, A.K.; Gandy, S.E. Isotopic Exchange in Prussian blue. J. Chem. Educ. 1981, 58, 355–357. [Google Scholar] [CrossRef]
- Ludi, A. Prussian blue, an Inorganic Evergreen. J. Chem. Educ. 1981, 58, 1013. [Google Scholar] [CrossRef]
- Garcia-Jareno, J.J.; Benito, D.; Navarro-Laboulais, J.; Vicente, F. Electrochemical Behavior of Electrodeposited Prussian blue Films on ITO Electrodes. An Attractive Laboratory Experience. J. Chem. Educ. 1998, 75, 881–884. [Google Scholar] [CrossRef]
- Ware, M. Prussian blue: Artist’s Pigment and Chemists’ Sponge. J. Chem. Educ. 2008, 85, 612–621. [Google Scholar] [CrossRef]
- Byrd, H.; Chapman, B.E.; Talley, C.L. Prussian blue Coated Electrode as a Sensor for Electroinactive Cations in Aqueous Solutions. J. Chem. Educ. 2013, 90, 775–777. [Google Scholar] [CrossRef]
- Wagner, C.; Oetken, M. Berliner Blau—Ein elektrochromes Material mit vielen Facetten. Chemkon 2016, 23, 111–119. [Google Scholar] [CrossRef]
- Wagner, C.; Blank, M.; Oetken, M. Das Ionenradienparadoxon—Experimentelle Ermittlung der (hydratisierten) Ionenradien von verschiedenen Kationen durch die Einlagerung in Berliner Blau. Chemkon 2018, 25, 57–62. [Google Scholar] [CrossRef]
- Fischer, R.; Oetken, M. Fingerabdrücke in Blau. Nachr. Chem. 2021, 69, 17–19. [Google Scholar] [CrossRef]
- You, Y.; Wu, X.-L.; Yin, Y.-X.; Guo, Y.-G. High-quality Prussian blue crystals as superior cathode materials for room temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643–1647. [Google Scholar] [CrossRef]
- Ishizaki, M.; Ando, H.; Yamada, N.; Tsumoto, K.; Ono, K.; Sutoh, H.; Nakamura, T.; Nakao, Y.; Kurihara, M. Redox-coupled alkali metal ion transport mechanism in binder-free films of Prussian blue nanoparticles. J. Mater. Chem. A 2019, 7, 4777–4787. [Google Scholar] [CrossRef]
- Ivanov, V.D. Four decades of electrochemical investigation of Prussian blue. Ionics 2020, 26, 531–547. [Google Scholar] [CrossRef]
- Kraft, A. Some considerations on the structure, composition, and properties of Prussian blue: A contribution to the current discussion. Ionics 2021, 27, 2289–2305. [Google Scholar] [CrossRef]
- Keggin, J.F.; Miles, F.D. Structures and formulae of the Prussian blues and related compounds. Nature 1936, 137, 577–578. [Google Scholar] [CrossRef]
- Dostal, A.; Kauschka, G.; Reddy, S.J.; Scholz, F. Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions. J. Electroanal. Chem. 1996, 406, 155–163. [Google Scholar] [CrossRef]
- Buser, H.-J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The Crystal Structure of Prussian blue: Fe4[Fe(CN)6]3·H2O. Inorg. Chem. 1977, 16, 2704–2710. [Google Scholar] [CrossRef]
- Guari, Y.; Larionova, J. (Eds.) Prussian Blue Nanoparticles and Nanocomposites: Synthesis, Devices and Applications; Pan Stanford Publishing: Singapore, 2019. [Google Scholar]
- Peters, K.; Pajakoff, S. Mechanochemische Farbreaktionen. Microchim. Acta 1962, 50, 314–320. [Google Scholar] [CrossRef]
- Reguera, E.; Fernandez-Bertran, J.; Nunez, L. Tribochemical Synthesis and Study of Mixed Potassium-Ferrous Ferrocyanide and its RuII and OsII Analogs. Z. Für Nat. B 1995, 50b, 1067–1070. [Google Scholar] [CrossRef]
- Tang, W.; Xie, Y.; Peng, F.; Yang, Y.; Feng, F.; Liao, X.-Z.; He, Y.-S.; Ma, Z.-F.; Chen, Z.; Ren, Y. Electrochemical Performance of NaFeFe(CN)6 Prepared by Solid Reaction for Sodium Ion Batteries. J. Electrochem. Soc. 2018, 165, A3910–A3917. [Google Scholar] [CrossRef]
- Gong, W.; Wan, M.; Zeng, R.; Rao, Z.; Su, S.; Xue, L.; Zhang, W.; Huang, Y. Ultrafine Prussian blue as a High-Rate and Long-Life Sodium-Ion Battery Cathode. Energy Technol. 2019, 7, 1900108. [Google Scholar] [CrossRef]
- He, S.; Zhao, J.; Rong, X.; Xu, C.; Zhang, Q.; Shen, X.; Qi, X.; Li, Y.; Li, X.; Niu, Y.; et al. Solvent-free mechanochemical synthesis of Na-rich Prussian white cathodes for high-performance Na-ion batteries. Chem. Eng. J. 2022, 428, 131083. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwak, S.-Y. Mechanochemically Synthesized Prussian blue for Efficient Removal of Cesium Ions from Aqueous Solutions. ACS Omega 2022, 7, 3222–3229. [Google Scholar] [CrossRef] [PubMed]
- Kraft, A. On the history of Prussian blue: Thomas Everitt (1805–1845) and Everitt’s Salt. Bull. Hist. Chem. 2014, 39, 18–25. [Google Scholar]
- Ojwang, D.O.; Svensson, M.; Njel, C.; Mogensen, R.; Menon, A.S.; Ericsson, T.; Häggström, L.; Maibach, J.; Brant, W.R. Moisture-Driven Degradation Pathways in Prussian White Cathode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 10054–10063. [Google Scholar] [CrossRef]
- De Wet, J.F.; Rolle, R. On the existence and Autoreduction of Iron(III)-hexacyanoferrate(III). ZAAC 1965, 336, 96–103. [Google Scholar] [CrossRef]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraft, A. The Preparation of Prussian Blue in a Mortar: An Example to Teach Sustainable Chemistry with Mechanochemical Reactions. Sustain. Chem. 2023, 4, 54-60. https://doi.org/10.3390/suschem4010006
Kraft A. The Preparation of Prussian Blue in a Mortar: An Example to Teach Sustainable Chemistry with Mechanochemical Reactions. Sustainable Chemistry. 2023; 4(1):54-60. https://doi.org/10.3390/suschem4010006
Chicago/Turabian StyleKraft, Alexander. 2023. "The Preparation of Prussian Blue in a Mortar: An Example to Teach Sustainable Chemistry with Mechanochemical Reactions" Sustainable Chemistry 4, no. 1: 54-60. https://doi.org/10.3390/suschem4010006
APA StyleKraft, A. (2023). The Preparation of Prussian Blue in a Mortar: An Example to Teach Sustainable Chemistry with Mechanochemical Reactions. Sustainable Chemistry, 4(1), 54-60. https://doi.org/10.3390/suschem4010006