Electrochemical Synthesis of 1,1′-Binaphthalene-2,2′-Diamines via Transition-Metal-Free Oxidative Homocoupling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Spectroscopy and Spectrometry
2.2.2. General Protocol for the Anodic Homocoupling of 2-Naphthylamines
3. Results
3.1. Optimization of the Reaction Conditions
3.2. Scope of Substrates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Telfer, S.; Kuroda, R. 1,1′-Binaphthyl-2,2′-diol and 2,2′-diamino-1,1′-binaphthyl: Versatile frameworks for chiral ligands in coordination and metallosupramolecular chemistry. Coord. Chem. Rev. 2003, 242, 33–46. [Google Scholar] [CrossRef]
- Hatano, M.; Ikeno, T.; Matsumura, T.; Torii, S.; Ishihara, K. Chiral lithium salts of phosphoric acids as Lewis acid-base conjugate catalysts for the enantioselective cyanosilylation of ketones. Adv. Synth. Catal. 2008, 350, 1776–1780. [Google Scholar] [CrossRef]
- Prasad, D.J.C.; Naidu, A.B.; Sekar, G. An efficient intermolecular C(aryl)–S bond forming reaction catalyzed by BINAM–copper(II) complex. Tetrahedron Lett. 2009, 50, 1411–1415. [Google Scholar] [CrossRef]
- Hannedouche, J.; Collin, J.; Trifonov, A.; Schulz, E. Intramolecular enantioselective hydroamination catalyzed by rare earth binaphthylamides. J. Organomet. Chem. 2011, 696, 255–262. [Google Scholar] [CrossRef]
- Averin, A.D.; Grigorova, O.K.; Malysheva, A.S.; Shaferov, A.V.; Beletskaya, I.P. Pd(0)-Catalyzed amination in the synthesis of chiral derivatives of BINAM and their evaluation as fluorescent enantioselective detectors. Pure Appl. Chem. 2020, 92, 1367–1386. [Google Scholar] [CrossRef]
- Yan, Z.-P.; Liu, T.-T.; Wu, R.; Liang, X.; Li, Z.-Q.; Zhou, L.; Zheng, Y.-X.; Zuo, J.-L. Chiral thermally activated delayed fluorescence materials based on R/S-N2,N2′-diphenyl-[1,1′-binaphthalene]-2,2′-diamine donor with narrow emission spectra for highly efficient circularly polarized electroluminescence. Adv. Funct. Mater. 2021, 31, 2103875. [Google Scholar] [CrossRef]
- Meng, Q.; Feng, Q.; Cui, L.; Li, F.; Cheng, Y.; Li, Y.; Wang, Y. Chiral binaphthylamine based emitters with donor-acceptor structures: Facile synthesis and circularly polarized luminescence. Dye. Pigment. 2022, 199, 110085. [Google Scholar] [CrossRef]
- Smrčina, M.; Vyskočil, S.; Máca, B.; Polášek, M.; Claxton, T.A.; Abbott, A.P.; Kočovský, P. Selective cross-coupling of 2-naphthol and 2-naphthylamine derivatives. A facile synthesis of 2,2′,3-trisubstituted and 2,2′,3,3′-tetrasubstituted 1,1′-binaphthyls. J. Org. Chem. 1994, 59, 2156–2163. [Google Scholar] [CrossRef]
- Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei, A. Oxidative coupling between two hydrocarbons: An update of recent C–H functionalizations. Chem. Rev. 2015, 115, 12138–12204. [Google Scholar] [CrossRef]
- Forkosh, H.; Vershinin, V.; Reiss, H.; Pappo, D. Stereoselective synthesis of optically pure 2-amino-2′-hydroxy-1,1′-binaphthyls. Org. Lett. 2018, 20, 2459–2463. [Google Scholar] [CrossRef]
- Hayashi, H.; Ueno, T.; Kim, C.; Uchida, T. Ruthenium-catalyzed cross-selective asymmetric oxidative coupling of arenols. Org. Lett. 2020, 22, 1469–1474. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Shabade, A.B.; Punji, B. Advances in C(sp2)–H/C(sp2)–H oxidative coupling of (hetero)arenes using 3d transition metal catalysts. Adv. Synth. Catal. 2021, 363, 1998–2022. [Google Scholar] [CrossRef]
- Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 2002, 102, 1359–1469. [Google Scholar] [CrossRef] [PubMed]
- Smrčina, M.; Lorenc, M.; Hanuš, V.; Sedmera, P.; Kočovský, P. Synthesis of enantiomerically pure 2,2′-dihydroxy-1,1′-binaphthyl, 2,2′-diamino-1,1′-binaphthyl, and 2-amino-2′-hydroxy-1,1′-binaphthyl. Comparison of processes operating as diastereoselective crystallization and as second order asymmetric transformation. J. Org. Chem. 1992, 57, 1917–1920. [Google Scholar] [CrossRef]
- Vyskočil, Š.; Smrčina, M.; Lorenc, M.; Tišlerová, I.; Brooks, R.D.; Kulagowski, J.J.; Langer, V.; Farrugia, L.J.; Kočovský, P. Copper(II)-mediated oxidative coupling of 2-aminonaphthalene homologues. Competition between the straight dimerization and the formation of carbazoles. J. Org. Chem. 2001, 66, 1359–1365. [Google Scholar] [CrossRef]
- Zi, G.; Xiang, L.; Zhang, Y.; Wang, Q.; Zhang, Z. Synthesis, structure, and activity of (PhCH2NH2)2CuCl2 for oxidative coupling of 2-naphthylamine. Appl. Organomet. Chem. 2007, 21, 177–182. [Google Scholar] [CrossRef]
- Yusa, Y.; Kaito, I.; Akiyama, K.; Mikami, K. Asymmetric catalysis of homo-coupling of 3-substituted naphthylamine and hetero-coupling with 3-substituted naphthol leading to 3,3′-dimethyl-2,2′-diaminobinaphthyl and -2-amino-2′-hydroxybinaphthyl. Chirality 2010, 22, 224–228. [Google Scholar] [CrossRef]
- Li, X.-L.; Huang, J.-H.; Yang, L.-M. Iron(III)-promoted oxidative coupling of naphthylamines: Synthetic and mechanistic investigations. Org. Lett. 2011, 13, 4950–4953. [Google Scholar] [CrossRef]
- Matsumoto, K.; Dougomori, K.; Tachikawa, S.; Ishii, T.; Shindo, M. Aerobic oxidative homocoupling of aryl amines using heterogeneous rhodium catalysts. Org. Lett. 2014, 16, 4754–4757. [Google Scholar] [CrossRef]
- Fujimoto, S.; Matsumoto, K.; Iwata, T.; Shindo, M. Aerobic oxidative homocoupling of anilides using heterogeneous metal catalysts. Tetrahedron Lett. 2017, 58, 973–976. [Google Scholar] [CrossRef]
- Lim, B.; Choi, M.; Cho, C. Acid-catalyzed condensation of 2,2′-diamino-1,1′-biaryls for the synthesis of benzo[c]carbazoles. Tetrahedron Lett. 2011, 52, 6015–6017. [Google Scholar] [CrossRef]
- Li, G.-Q.; Gao, H.; Keene, C.; Devonas, M.; Ess, D.H.; Kürti, L. Organocatalytic aryl-aryl bond formation: An atroposelective [3,3]-rearrangement approach to BINAM derivatives. J. Am. Chem. Soc. 2013, 135, 7414–7417. [Google Scholar] [CrossRef] [PubMed]
- De, C.K.; Pesciaioli, F.; List, B. Catalytic asymmetric benzidine rearrangement. Angew. Chem. Int. Ed. 2013, 52, 9293–9295. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zhang, Q.; Guo, C. Switchable Smiles rearrangement for enantioselective O-aryl amination. Org. Lett. 2019, 21, 4915–4918. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, H.J. Anodic and cathodic CC-bond formation. Angew. Chem. Int. Ed. Engl. 1981, 20, 911–934. [Google Scholar] [CrossRef]
- Kirste, A.; Elsler, B.; Schnakenburg, G.; Waldvogel, S.R. Efficient anodic and direct phenol-arene C,C cross-coupling: The benign role of water or methanol. J. Am. Chem. Soc. 2012, 134, 3571–3576. [Google Scholar] [CrossRef]
- Schulz, L.; Enders, M.; Elser, B.; Schollmeyer, D.; Dyballa, K.M.; Franke, R.; Waldvogel, S.R. Reagent- and metal-free anodic C-C cross-coupling of aniline derivatives. Angew. Chem. Int. Ed. 2017, 56, 4877–4881. [Google Scholar] [CrossRef]
- Schulz, L.; Franke, R.; Waldvogel, S.R. Direct anodic dehydrogenative cross- and homo-coupling of formanilides. ChemElectroChem 2018, 5, 2069–2072. [Google Scholar] [CrossRef]
- Schulz, L.; Husmann, J.-Å.; Waldvogel, S.R. Outstandingly robust anodic dehydrogenative aniline coupling reaction. Electrochim. Acta 2020, 337, 135786. [Google Scholar] [CrossRef]
- Hornback, J.M.; Gossage, H.E. Electrochemical oxidative dehydrodimerization of naphthylamines. An efficient synthesis of 8,8-dianilino-5,5′-binaphthalene-l,l′-disulfonate. J. Org. Chem. 1985, 50, 541–543. [Google Scholar] [CrossRef]
- Vettorazzi, N.; Silber, J.J.; Sereno, L. Anodic oxidation of 1-naphthylamine in acetonitrile. J. Electroanal. Chem. Interfacial Electrochem. 1981, 125, 459–475. [Google Scholar] [CrossRef]
- Luo, M.-J.; Li, Y.; Ouyang, X.-H.; Li, J.-H.; He, D.-L. Electrochemical dehydrogenative cross-coupling of two anilines: Facile synthesis of unsymmetrical biaryls. Chem. Commun. 2020, 56, 2707–2710. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, X. Nickel catalysis enables convergent paired electrolysis for direct arylation of benzylic C–H bonds. Chem. Sci. 2020, 11, 10786–10791. [Google Scholar] [CrossRef] [PubMed]
- Eberson, L.; Hartshorn, M.P.; Persson, O. 1,1,1,3,3,3-Hexafluoropropan-2-ol as a solvent for the generation of highly persistent radical cations. J. Chem. Soc. Perkin Trans. 2 1995, 18, 1735–1744. [Google Scholar] [CrossRef]
- Eberson, L.; Persson, O.; Hartshorn, M.P. Detection and reactions of radical cations generated by photolysis of aromatic compounds with tetranitromethane in 1,1,1,3,3,3-hexafluoro-2-propanol at room temperature. Angew. Chem. Int. Ed. Engl. 1995, 34, 2268–2269. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Kozlowski, M.C. Enantioselective oxidative biaryl coupling reactions catalyzed by 1,5-diazadecalin metal complexes. Org. Lett. 2001, 3, 1137–1140. [Google Scholar] [CrossRef]
- Takizawa, S.; Katayama, T.; Somei, H.; Asano, Y.; Yoshida, T.; Kameyama, C.; Rajesh, D.; Onitsuka, K.; Suzuki, T.; Mikami, M.; et al. Dual activation in oxidative coupling of 2-naphthols catalyzed by chiral dinuclear vanadium complexes. Tetrahedron 2008, 64, 3361–3371. [Google Scholar] [CrossRef]
- Guo, Q.-X.; Wu, Z.-J.; Luo, Z.-B.; Liu, Q.-Z.; Ye, J.-L.; Luo, S.-W.; Cun, L.-F.; Gong, L.-Z. Highly enantioselective oxidative couplings of 2-naphthols catalyzed by chiral bimetallic oxovanadium complexes with either oxygen or air as oxidant. J. Am. Chem. Soc. 2007, 129, 13927–13938. [Google Scholar] [CrossRef]
Entry | Variation from Standard Conditions | % Yield (% Current Efficiency) a | |
---|---|---|---|
2a | 3a | ||
1 | None | 99, 98 b (66) | - |
2 | C (+)/Pt (−) | 43 (29) | - |
3 | FTO (−)/FTO c (+) | 29 (20) | - |
4 | MeOH instead of HFIP | 10 (7) | 5 |
5 | EtOH instead of HFIP | 6 (4) | 5 |
6 | CF3CH2OH instead of HFIP | 12 (8) | - |
7 | 2 mA | 60 (80) | - |
8 | 6 mA | 49 (22) | - |
9 | with LiClO4 instead of nBu4NPF6 | 57 d (38) | - |
10 | with nBu4NClO4 instead of nBu4NPF6 | 29 (19) | - |
11 | No electricity | No reaction |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Khalid, M.I.; Kamble, G.T.; Sasai, H.; Takizawa, S. Electrochemical Synthesis of 1,1′-Binaphthalene-2,2′-Diamines via Transition-Metal-Free Oxidative Homocoupling. Sustain. Chem. 2022, 3, 551-557. https://doi.org/10.3390/suschem3040034
Fan D, Khalid MI, Kamble GT, Sasai H, Takizawa S. Electrochemical Synthesis of 1,1′-Binaphthalene-2,2′-Diamines via Transition-Metal-Free Oxidative Homocoupling. Sustainable Chemistry. 2022; 3(4):551-557. https://doi.org/10.3390/suschem3040034
Chicago/Turabian StyleFan, Duona, Md. Imrul Khalid, Ganesh Tatya Kamble, Hiroaki Sasai, and Shinobu Takizawa. 2022. "Electrochemical Synthesis of 1,1′-Binaphthalene-2,2′-Diamines via Transition-Metal-Free Oxidative Homocoupling" Sustainable Chemistry 3, no. 4: 551-557. https://doi.org/10.3390/suschem3040034
APA StyleFan, D., Khalid, M. I., Kamble, G. T., Sasai, H., & Takizawa, S. (2022). Electrochemical Synthesis of 1,1′-Binaphthalene-2,2′-Diamines via Transition-Metal-Free Oxidative Homocoupling. Sustainable Chemistry, 3(4), 551-557. https://doi.org/10.3390/suschem3040034