1. Introduction
Autonomous vessel sailing is becoming an attractive research topic in recent years. Due to a large number of vessel collisions and economical advantages, autonomous vessel sailing becomes attractive in companies and also for research. The accident statistics of the European Maritime Safety Agency state that human errors are the initial factor in 62 percent of cases with EU registered ships from 2011 to 2016 [
1]. To avoid collisions in the case of autonomous sailing, trajectory prediction plays a significant role. To realize the trajectory prediction task, accurate prediction models are required.
Due to the nonlinear relations between hydrodynamics and complex rigid motion behavior of the ship, the modeling process is difficult. Models can be obtained using two principal approaches. Experimental modeling is economically costly, but accurate and reliable when tested well. The related methods are applicable only in areas/situations with suitable and identical conditions. On the other hand, theoretical methods are based on equations that explicitly consider fluid mechanics, can be applied to a variety of situations, and are difficult to validate. Mostly computational fluid dynamics (CFD) techniques are used [
2]. In [
3], the authors use coefficient-based models that allow fast time simulations of arbitrary rudder maneuvers. The disadvantage of this approach is that it requires data from many system variables such as rudder angle, drift angle, yaw rate, dimensions of a ship, and non-dimensional hydrodynamic derivatives derived from an Abkowitz ship model using Taylor series [
3]. It is known that simulation-based experimental modeling is a well-established approach for generating ship-specific models to be used for further examination. Therefore, it becomes obvious that the geometry of ships is required and complex simulations or experiments have to generated. The use of these kinds of models for prediction of the paths of encountering ships is not suitable due to missing knowledge like the unknown geometry of encountering ships (the dynamical behavior has to be predicted).
AIS (Automatic Identification System) is an automatic tracking system that identifies and locates vessels in the sea. This is achieved by data exchange with other ships, AIS base stations and satellites [
4]. Thus, it can be said that the Automatic Identification System (AIS) is an international standard for ship-to-ship, ship-to-shore, and shore-to-ship exchange of information. This information includes vessel identity, position, speed, course, destination and other critical information, which ensures navigation safety and maritime security.
In the ship modeling literature [
5], several identification methods for simplified ship parameter identification are suggested like least squares method, Bayesian approach, maximum likelihood method, extended Kalman filter [
6], etc. These methods are suited to different hull forms and environment conditions. It is noted that the methods are sensitive to noise and initial conditions. To cope up with initial conditions, the authors in [
7] use recursive least square (RLS) in combination with Support Vector Machine (SVM), assuming there are no disturbances acting on the system. In [
5], the authors develop an approach to identify parameters under disturbances using SVM. The problem with this approach is that it cannot be applied to time-varying systems. The reason is that disturbances are assumed as constant, but in reality the ship dynamics are changing. Neural network approaches have been developed to identify the model parameters using ARX model [
8]. Here, RLS provide initial identification results. Linear decreasing inertia weight particle swarm optimization is used to define optimal parameters by minimizing the global sum of square error (SSE) as an objective. These models do not require any initial estimates. On the other hand, in the case of black-box models, the parameters determined by neural networks are not necessarily correlated to physical properties of the ship. The effect of different environmental effects on trajectory prediction are not considered in this approach.
Many approaches have been used to identify the parameters. The main drawback of most of the approaches is that a large number of coefficients for ship dynamics, which are effected with regard to environmental disturbances and load conditions, have to be identified. In the case of encountering ships, the loading value, rudder angle, and yaw rate are typically unknown. As a result, the above mentioned approaches will provide models for specific cases or environment conditions.
In [
9], the authors applied deep learning approaches to predict the positions of ships in the near environment with respect to their positions. The approach decomposes historical ship behaviors into local behavioral models. In [
10], the authors used sequences of past AIS observations to produce future predictions using Recurrent Neural Networks. The drawback of the above mentioned approaches is that the local behavior model still considers the past data of 30 min with an update of local behavior every 15 min. It is assumed that this is too large for the consideration of short time dynamical changes of vessels.
To overcome the aforementioned restrictions in this contribution, an approach is developed to predict the trajectory in the near future based on position measurements only. Thus, the data are assumed as measurable from AIS systems or radar-based ship-based systems. The approach identifies the suitable parameters for the proposed model and takes the environmental disturbances implicitly into account. Additionally, local model parameters are locally updated. Thus, in this contribution, the main focus is the development of a model-based trajectory prediction method. Here "model-based" refers to a local model generated by measurements. To ensure practical applicability, the robustness of the approach is addressed and validated.
The structure of the paper is as follows. In
Section 2, the problem is described followed by the description of the approach taken in this work. Additionally, a measure for validation of the approach is given. In
Section 3, the data used in this work and details of the ship used for experiments are described. To illustrate the robustness and applicability of the approach, different scenarios and situations are used, and related results are obtained and explained in detail. The AIS information is available in different sampling rates. The effects of different sampling rates of the information on trajectory prediction are evaluated in
Section 3.3. Therefore, for the introduced scenarios and conditions, the assumed measurements are additionally artificially corrupted to evaluate the effect on the prediction capability of the new approach. Finally, a summary and the conclusions are presented.
2. System Identification Approach
System identification entails developing a mathematical model using the inputs and outputs of a system. Different approaches of system identification are known in the literature. These depend on whether the system is assumed as linear/non-linear or parametric/non-parametric. System identification involves five steps [
11]: collecting the data, selecting the model structure either from prior knowledge or trial and error, choosing a criterion (cost function) to fit the model to the data, obtaining the parameters of the model by optimizing a suitable cost function, and finally, validating the model by testing it on new data (not used for "training"/identification). For the approach developed in this paper, it is assumed that the input position information for a certain part of the past trajectory is available as position measurement from the past trajectory. As output the upcoming position trajectory is predicted over a certain extent of the trajectory.
2.1. Problem Description
While determining the path of the vessel, collision avoidance is an important tasks for realizing safe operation of autonomous vessels. To ensure an acceptable level of safety of autonomous vessels, collision avoidance must also be efficient. The prediction of the upcoming behavior of objects in this context (typically other vessels/encountering vessels) is needed. Here, the trajectory prediction is also noted as behavioral intention prediction of other vessels. In this contribution, the environment can be rivers, channels, and ports with high traffic density. The smaller the area of movements (like the considered case of vessels sailing on rivers or channels), the more stringent the requirements. Model-based approaches independent of complex kinematic equations should be developed that are able to adapt to real environmental changes. To develop a ship model, the first step is to define the input variables. In this contribution, it is assumed that the measured variables are position variables generated by the AIS system (or alternatively generated by a ship-based radar system). For the application to serve in assistance systems as well in autonomous systems, the developed model should not be complex and must be applicable in real time.
2.2. Approach for Global and Local Model Identification
In this work, the task of defining the dynamical behavior of ships (ship model) is achieved in two steps. In the first step, the structure of the model has to be chosen. Different models of first-, second-, third-, and fourth-order systems are tested. The second-order system is selected based on better performance vs. the competing models. The model is defined for one coordinate of the position (longitude, latitude) using
as output and
as input with the equation
The model is transformed into a state space form as
D u, u with
A
—State matrix ,
x
—State vector ,
B
—Input-to-state matrix ,
u
—Input vector ,
C
—Output matrix ,
y
—Output vector ,
D—Transmission matrix , —Stiffness and damping coefficients,
k
—Vector of unknown inputs , and
—Coefficient of input affecting .
Equation (
2) assumes the input
u via matrix
B as well as an unknown input denoted as
acting on the system. The resulting model is therefore determined by the global parameter matrices
A, B, C, D as well as the vector
k assumed as local adaptable.
The main idea of the proposed approach is to assume this mathematical model for both variables of the planar 2D-behavior of the vessel. The unknown matrices
A, B, C, and
D as well as
k have to be identified by a suitable online applicable procedure. Identification is the first step to obtain the parameters of
A, B, C, D in [
12]. This identification process has to minimize the error between predicted output
as prediction for
and measured position
y. The problem is formulated as an optimization problem and solved using minimizing the Mean Square Error (MSE).
In this contribution, 2D positions (longitude, latitude) are considered using two models named as and , respectively. Here and describe the models identified separately for longitude and latitude positions, respectively.
A sliding window approach is applied to identify the local parameter
k. The window is defined as
, where
contains global parameters
A, B, C, D and local parameter
k. Parameter
k is determined using the input sequence of positions
l and output sequence of positions
h. The length of the output sequence
h is decided according to [
13], where it is taken as 125 s. In this work, it is considered as 3 min. The local parameter is adapted using a window until time point
. The model performance depends consequently on
l and
h. The predictions for the past
l input sequence are calculated using the already determined function
by
.
As illustrated, the model is composed of global (fixed) parameters
A, B, C, D and a local (locally adapted) parameter
k. Thus, the local parameter
k is estimated online and is assumed time-varying. A sliding window approach is used to calculate the local parameter where a window of the specified length
moves over the data at time
, with
denoting the beginning of the past data interval and
the prediction interval as shown in
Figure 1.
2.3. Measures for Validation
The average displacement error (ADE) metric is selected to evaluate the predictions. This refers to the mean square error (MSE) over prediction horizon
T of the trajectory and the ground truth points as shown in
Figure 2 and is calculated as
4. Summary and Conclusions
In this contribution the trajectory prediction of vessels is provided. In contrast to the usual approaches, here a simple parameter-based approach is developed and validated using measured position information from different vessels (Prominent dataset, Niedersachsen 22). A sliding window approach is applied to continuously identify the model. The model is used to predict the upcoming trajectory of encountering ships and therefore their assumed intentions. The approach presented a model for a local time scale (prediction horizon of 180 s) using global parameters identified through a middle time scale. The key idea is to adapt a single parameter on a very local/narrow time scale to represent local effects affecting the dynamical behavior of vessels. For validation different scenarios varying in their complexity are used. The results show that the newly introduced approach solves the given task. As an advantage, an easy to identify model that allows an initial prediction using easy to have position measurements is established. The results indicate in detail that the model performance depends on the different situations as well as the geometry of the river. Estimates for upstream scenarios are more feasible than those with downstream vessels because the vessel moves more slowly. Furthermore, the results show that model predictions for measurements available every 1 or 2 s show very good results. For data availability that is updated only 10 s, on the other hand, the model has to be continuously re-trained, so the adaptation of the local parameter has to be adjusted earlier.
The presented approach shows the possibilities and limitations of using an easy-to-realize data-driven prediction algorithm, which in combination with the behavior estimation of encountering vessels will be essential for autonomous ships. This model will later be combined with other data-driven approaches generated from clustered historical data representing long-term behaviors of inland waterway vessels.