Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems
Abstract
:1. Introduction
1.1. Airborne Wind Energy
1.2. Airborne Wind Farm Output
1.3. Objective
2. Method
2.1. Model
2.2. Design Optimization Overview
2.3. Trajectory and Power Curve Optimization
Aspect Ratio and Reynold’s Number Effects
2.4. Aircraft Mass Scaling
2.4.1. Structural Scaling
2.4.2. Rotor Sizing
2.4.3. Electrical Scaling
2.4.4. Roll Control Unit
2.4.5. Tether Design
2.5. Economic Assumptions
3. Design Optimization Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- CAISO. What the Duck Curve Tells Us about Managing a Green Grid; Technical Report; California Independent Systems Operator: Folsom, CA, USA, 2016; Available online: www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf (accessed on 15 June 2020).
- Musial, W. Offshore Wind Energy Briefing; Technical Report; California Energy Commission Integrated Energy Policy Workshop Offshore Renewable Energy: Sacramento, CA, USA, 2016. Available online: efiling.energy.ca.gov/GetDocument.aspx?tn=211749 (accessed on 15 June 2020).
- Lazard’s Levelized Cost of Energy Analysis Version 12.0. Available online: www.lazard.com/media/450784/lazards-levelized-cost-of-energy-version-120-vfinal.pdf (accessed on 15 June 2020).
- Ilas, A.; Ralon, P.; Rodriguez, A.; Taylor, M. Renewable Power Generation Costs in 2017; International Renewable Energy Agency: Abu Dhabi, UAE, 2018; Available online: www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018_summary.pdf (accessed on 15 June 2020).
- De Vries, E. Floating Offshore Takes to the Skies. Available online: www.windpowermonthly.com/article/1466082/floating-offshore-takes-skies (accessed on 15 June 2020).
- Mahbub, A.; Rehman, S.; Meyer, J.; Al-Hadhrami, L. Wind Speed and Power Characteristics at Different Heights for a Wind Data Collection Tower in Saudi Arabia. In World Renewable Energy Congress; Linköping University Electronic Press: Linköping, Sweden, 2011. [Google Scholar] [CrossRef]
- Loyd, M. Crosswind Kite Power. AIAA J. Energy 1980, 4, 106–111. [Google Scholar] [CrossRef]
- Vander Lind, D. Analysis and Flight Test Validation of High Performance Airborne Wind Turbines. In Airborne Wind Energy; Ahrens, U., Diehl, M., Schmehl, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 473–490. [Google Scholar] [CrossRef]
- SkySails GmbH. SkySails Product Brochure. Available online: www.skysails.info/fileadmin/userupload/Downloads/ENSkySailsProductBrochure.pdf (accessed on 15 June 2020).
- Sieberling, S. Flight Guidance and Control of a Tethered Glider in an Airborne Wind Energy Application. In Advances in Aerospace Guidance, Navigation and Control; Chu, Q., Mulder, B., Choukroun, D., van Kampen, E.J., de Visser, C., Looye, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Canale, M.; Fagiano, L.; Milanese, M. Power Kites for Wind Energy Generation; Fast Predictive Control of Tethered Airfoils. IEEE Control Syst. Mag. 2007, 27, 25–38. [Google Scholar] [CrossRef]
- Gros, S.; Zanon, M.; Diehl, M. Control of Airborne Wind Energy Systems Based on Nonlinear Model Predictive Control and Moving Horizon Estimation. In Proceedings of the European Control Conference, Urich, Switzerland, 17–19 July 2013. [Google Scholar] [CrossRef]
- Houska, B.; Diehl, M. Optimal Control for Power Generating Kites. In Proceedings of the 2007 European Control Conference (ECC), Kos, Greece, 2–5 July 2007; pp. 3560–3567. [Google Scholar] [CrossRef]
- Williams, P.; Lansdorp, B.; Ockels, W. Optimal Crosswind Towing and Power Generation with Tethered Kites. J. Guid. Control. Dyn. 2008, 31, 81–93. [Google Scholar] [CrossRef]
- Furey, A.; Harvey, I. Robust adaptive control for kite wind energy using evolutionary robotics. In Proceedings of the Biological Approaches for Engineering Conference, Southampton, UK, 17–19 March 2008. [Google Scholar]
- Faggiani, P.; Schmehl, R. Design and Economics of a Pumping Kite Wind Park. In Airborne Wind Energy; Springer: Singapore, 2018; pp. 391–411. [Google Scholar] [CrossRef] [Green Version]
- Frost, C.; Logan, A.; Gow, G.; Ainsworth, D. Global Prospects for Airborne Wind Onshore. In Proceedings of the Airborne Wind Energy Conference, Glasgow, UK, 15–16 October 2019. [Google Scholar]
- Zywietz, D. What will it take for Airborne Wind Energy (AWE) to be successful in Remote & Mini-grid Applications? In Proceedings of the Airborne Wind Energy Conference, Glasgow, UK, 15–16 October 2019. [Google Scholar]
- Yang, H.; Chen, J.; Pang, X. Wind Turbine Optimization for Minimum Cost of Energy in Low Wind Speed Areas Considering Blade Length and Hub Height. Appl. Sci. 2018, 8, 1202. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Zhang, X.; Song, D.; Tang, W.; Yang, J.; Li, L.; Tian, X.; Wen, W. Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines. Energies 2018, 11, 2728. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Wang, T.; Wang, L.; Zhao, N. Impact of Economic Indicators on the Integrated Design of Wind Turbine Systems. Appl. Sci. 2018, 8, 1668. [Google Scholar] [CrossRef] [Green Version]
- Felker, F. From Kiteboard to Energy Kite: Makani’s Path to Power Generation Through Prototypes. 2017. Available online: medium.com/makani-blog/from-kiteboard-to-energy-kite-f0ced0680ed8 (accessed on 15 June 2020).
- Felker, F. A Long and Windy Road. 2020. Available online: medium.com/makani-blog/a-long-and-windy-road-3d83b9b78328 (accessed on 15 June 2020).
- Staff. Long Duration Test Flight 2018; Kitemill: Voss, Norway, 2018; Available online: www.kitemill.com/article/63/Longdurationtestflight2018 (accessed on 15 June 2020).
- Staff. Soaring High with Kite-Wind Test Flight. 2019. Available online: www.windpowermonthly.com/article/1594531/soaring-high-kite-wind-test-flight (accessed on 15 June 2020).
- Aull, M. A Non-linear Inverse Model for Airborne Wind Energy System Analysis. Wind Energy 2019, in press. [Google Scholar]
- Noth, A.; Siegwart, R. Design of Solar Powered Airplanes for Continuous Flight; Technical Report; Swiss Federal Institute of Technology: Zürich, Switzerland, 2006. [Google Scholar] [CrossRef]
- Betz, A. Introduction to the Theory of Flow Machines; Pergamon Press: Oxford, UK, 1966. [Google Scholar] [CrossRef]
- ATLANTIS Metric Space Workbook for DE-FOA-0002051; Technical Report; Advanced Research Projects Agency-Energy: Washington, DC, USA, 2019. Available online: arpa-e-foa.energy.gov/FileContent.aspx?FileID=46f075c8-cb95-4ce9-82ca-6750fce2cca9 (accessed on 1 March 2019).
- Safety Statistics of UAS in USAF. AUVSI News. 2014; Available online: www.auvsi.org/safety-statistics-uas-usaf (accessed on 15 June 2020).
(m | 4 | 9 | 16 | 25 | 36 |
---|---|---|---|---|---|
2.911 | 3.116 | 3.322 | 3.527 | 3.733 | |
(kW) | 42.0 | 99.3 | 183.3 | 294.5 | 432.9 |
(kN) | 18.1 | 43.6 | 82.7 | 137.2 | 209.1 |
lighter (kg) | 60 | 135 | 240 | 375 | 540 |
heavier (kg) | 60 | 202.5 | 480 | 937.5 | 1620 |
(m) | 160 | 240 | 320 | 400 | 480 |
(V) | 1600 | 2400 | 3200 | 4000 | 4800 |
Wing + Fuselage + Tail + Actuators | 50% | |
---|---|---|
SFG+prop | 15% | |
Motor | 15% | |
Power electronics | 10% | |
Roll Control Unit (RCU) | 10% |
(Material $/kg) | (Manufacture $/kg) | (Installation $/kg) | Unit Cost $ | |
---|---|---|---|---|
Structure | 8 | 30.96 | 0.8 | 2982 |
Generator, Inverter | 2 | 18.98 | 0.2 | 529.5 |
Tether, Interconnects | 3 | 20 | 0.2 | 1887 |
Floating platform | 2 | 4 | 0.26 | 12,520 |
Mooring system | 2 | 0.28 | 1.04 | 498 |
Anchor system | 0.6 | 4.02 | 2.088 | 1006.2 |
(m) | 4 | 9 | 9 | 16 | 16 | 25 | 25 | 36 | 36 |
---|---|---|---|---|---|---|---|---|---|
16 | 15.8 | 15.9 | 15.9 | 16 | 15.9 | 15.9 | 15.7 | 15.7 | |
(kW) | 44 | 106 | 106 | 194 | 192 | 307 | 308 | 448 | 449 |
(kN) | 16.1 | 43.1 | 43.5 | 82.6 | 81.2 | 136 | 136 | 208 | 209 |
(m) | 160 | 240 | 240 | 319 | 320 | 398 | 399 | 473 | 476 |
2.91 | 3.12 | 3.12 | 3.33 | 3.32 | 3.53 | 3.53 | 3.74 | 3.74 | |
0.278 | 0.315 | 0.313 | 0.353 | 0.348 | 0.391 | 0.391 | 0.439 | 0.439 | |
0.133 | 0.137 | 0.137 | 0.139 | 0.138 | 0.14 | 0.14 | 0.141 | 0.142 | |
7.09 | 6.9 | 6.92 | 6.77 | 6.83 | 6.66 | 6.64 | 6.46 | 6.45 | |
(m/s) | 39.6 | 41.7 | 41.9 | 41.9 | 41.6 | 41.8 | 41.8 | 41.9 | 41.9 |
(kg) | 57.4 | 137 | 209 | 245 | 488 | 380 | 952 | 543 | 1630 |
(kg) | 16.9 | 66 | 66.4 | 167 | 164 | 337 | 340 | 606 | 611 |
(mm) | 11 | 17.1 | 17.2 | 23.1 | 23 | 29.2 | 29.3 | 35.7 | 35.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aull, M.; Stough, A.; Cohen, K. Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems. Automation 2020, 1, 1-16. https://doi.org/10.3390/automation1010001
Aull M, Stough A, Cohen K. Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems. Automation. 2020; 1(1):1-16. https://doi.org/10.3390/automation1010001
Chicago/Turabian StyleAull, Mark, Andy Stough, and Kelly Cohen. 2020. "Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems" Automation 1, no. 1: 1-16. https://doi.org/10.3390/automation1010001
APA StyleAull, M., Stough, A., & Cohen, K. (2020). Design Optimization and Sizing for Fly-Gen Airborne Wind Energy Systems. Automation, 1(1), 1-16. https://doi.org/10.3390/automation1010001