The Role of the Thoracic Spine during Breathing in Osteogenesis Imperfecta: A Combined Traditional Morphometry and 3D Geometric Morphometrics Research
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Pulmonary Function Tests and CT Protocol
2.3. Traditional Morphometric Analyses
2.4. Shape Data and Geometric Morphometrics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marini, J.C.; Blissett, A.R. New genes in bone development: What’s new in OsteogenesisImperfecta. J. Clin. Endocrinol. Metab. 2013, 98, 3095–3103. [Google Scholar] [CrossRef]
- Byers, P.H.; Steiner, R.D. Osteogenesis Imperfecta. Annu. Rev. Med. 1992, 43, 269–282. [Google Scholar] [CrossRef]
- Watanabe, G.; Kawaguchi, S.; Matsuyama, T.; Yamashita, T. Correlation of scoliotic curvature with Z-score bone mineral density and body mass index in patients with Osteogenesis Imperfecta. Spine 2007, 32, 488–494. [Google Scholar] [CrossRef]
- Lubicky, J.P. The spine in Osteogenesis Imperfecta. Spine Deform. 2012, 1, 124–132. [Google Scholar] [CrossRef]
- Marini, J.C.; Forlino, A.; Bächinger, H.P.; Bishop, N.J.; Byers, P.H.; De Paepe, A.; Fassier, F.; Fratzl-Zelman, N.; Kozloff, K.M.; Krakow, D.; et al. Osteogenesis Imperfecta. Nat. Rev. Dis. Primers 2017, 18, 17052. [Google Scholar] [CrossRef] [PubMed]
- Sillence, D.O.; Senn, A.; Danks, D.M. Genetic heterogeneity in Osteogenesis Imperfecta. J. Med. Genet. 1979, 16, 101–116. [Google Scholar] [CrossRef] [Green Version]
- Wallace, M.J.; Kruse, R.W.; Shah, S.A. The spine in patients with Osteogenesis Imperfecta. J. Am. Acad. Orthop. Surg. 2017, 25, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Shapiro, J.R. Osteogenesis imperfect: Epidemiology and pathophysiology. Curr. Osteoporos. Rep. 2007, 5, 91–97. [Google Scholar] [CrossRef]
- Engelbert, R.H.H.; Uiterwaal, C.S.P.M.; Van der Hulst, A.; Witjes, B.; Helders, P.J.M.; Pruijs, H.E.H. Scoliosis in children with Osteogenesis Imperfecta: Influence of severity of disease and age of reaching motor milestones. Eur. Spine J. 2003, 12, 130–134. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.Y.; Cho, T.J.; Choi, I.H.; Chung, C.Y.; Yoo, W.J.; Kim, J.H.; Park, Y.K. Clinical and radiological manifestations of Osteogenesis Imperfecta type V. J. Korean Med. Sci. 2006, 21, 709–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlösser, T.P.C.; Van der Heijden, G.J.M.G.; Versteeg, A.L.; Castelein, R.M. How “idiopathic” is adolescent idiopathic scoliosis? A systematic review on associated abnormalities. PLoS ONE 2014, 9, e97461. [Google Scholar]
- Wekre, L.L.; Kjensli, A.; Aasand, K.; Falch, J.A.; Eriksen, E.F. Spinal deformities and lung function in adults with Osteogenesis Imperfecta. Clin. Respir. J. 2014, 8, 437–443. [Google Scholar] [CrossRef]
- LoMauro, A.; Pochintesta, S.; Romei, M.; D’Angelo, M.G.; Pedotti, A.; Turconi, A.C.; Aliverti, A. Rib cage deformities alter respiratory muscle action and chest wall function in patients with severe Osteogenesis Imperfecta. PLoS ONE 2012, 7, e35965. [Google Scholar] [CrossRef]
- Sanchis-Gimeno, J.A.; Lois-Zlolniski, S.; González-Ruiz, J.M.; Palancar, C.A.; Torres-Tamayo, N.; García-Martínez, D.; Aparicio, L.; Perez-Bermejo, M.; Blanco-Perez, E.; Mata-Escolano, F.; et al. Association between ribs shape and pulmonary function in patients with Osteogenesis Imperfecta. J. Adv. Res. 2019, 22, 177–185. [Google Scholar]
- LoMauro, A.; Fraschini, P.; Pochintesta, S.; Romei, M.; D’Angelo, M.G.; Aliverti, A. Ribcage deformity and the altered breathing pattern in children with Osteogenesis Imperfecta. Pediatr. Pulmonol. 2018, 53, 964–972. [Google Scholar] [CrossRef] [PubMed]
- Widmann, R.F.; Bitan, F.D.; LaPlaza, F.J.; Burke, S.W.; DiMaio, M.F.; Schneider, R. Spinal deformity, pulmonary compromise, and quality of life in Osteogenesis Imperfecta. Spine 1999, 24, 1673–1678. [Google Scholar] [CrossRef] [PubMed]
- Garcıa-Rıo, F.; Calle, M.; Burgos, F.; Casan, P.; Del Campo, F.; Galdiz, J.B.; Giner, J.; González-Mangado, N.; Ortega, F.; Puente Maestu, L. Spirometry. Spanish Society of Pulmonology and Thoracic Surgery (SEPAR). Arch. Bronconeumol. 2013, 49, 388–401. [Google Scholar]
- Pieper, S.; Halle, M.; Kikinis, R. 3D Slicer. In Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821), Arlington, VA, USA, 18 April 2004; pp. 632–635. [Google Scholar]
- Bastir, M.; Sanz-Prieto, D.; Burgos, M. Three-dimensional form and function of the nasal cavity and nasopharynx in humans and chimpanzees. Anat. Rec. 2021. [Google Scholar] [CrossRef]
- Cobb, J. Outline for the study of scoliosis. Am. Acad. Orthop. Surg. Instr. Course Lect. 1948, 5, 261–275. [Google Scholar]
- Brink, R.C.; Wijdicks, S.P.J.; Tromp, I.N.; Schlösser, T.P.C.; Kruyt, M.C.; Beek, F.J.A.; Castelein, R.M. A reliability and validity study for different coronal angles using ultrasound imaging in adolescent idiopathic scoliosis. Spine J. 2017, 18, 979–985. [Google Scholar] [CrossRef]
- Tanguay, F.; Mac-Thiong, J.-M.; De Guise, J.A.; Labelle, H. Relation between the sagittal pelvic and lumbar spine geometries following surgical correction of adolescent idiopathic scoliosis. Eur. Spine J. 2006, 16, 531–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Mitteroecker, P.; Gunz, P. Advances in Geometric Morphometrics. Evol. Biol. 2009, 36, 235–247. [Google Scholar] [CrossRef] [Green Version]
- González-Ruiz, J.M. La Morfometría Geométrica como Herramienta Aplicada al Estudio de la Escoliosis en Pacientes con Osteogénesis Imperfect. Master’s Dissertation, Universidad Autónoma de Madrid, Madrid, Spain, 2018. [Google Scholar]
- Rohlf, F.J.; Slice, D. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks. Syst. Zool. 1990, 39, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, C.P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef]
- Bastir, M.; García-Martínez, D.; Torres-Tamayo, N.; Palancar, C.A.; Fernández-Pérez, F.J.; Riesco-López, A.; Osborne-Márquez, P.; Ávila, M.; López-Gallo, P. Workflows in a Virtual Morphology Lab: 3D scanning, measuring, and printing. J. Anthropol. Sci. 2019, 97, 107–134. [Google Scholar]
- Hammer, Ø. PAST Paleontological Statistics; Version 3.15; Natural History Museum, University of Oslo: Oslo, Norway, 2017. [Google Scholar]
- McAllion, S.J.; Paterson, C.R. Causes of death in Osteogenesis Imperfecta. J. Clin. Pathol. 1996, 49, 627–630. [Google Scholar] [CrossRef] [Green Version]
- Arcaro, G.; Braccioni, F.; Gallan, F.; Marchi, M.R.; Vianello, A. Noninvasive positive pressure ventilation in the management of acute respiratory failure due to Osteogenesis Imperfecta. J. Clin. Anesth. Feb. 2012, 24, 55–57. [Google Scholar] [CrossRef]
- Parker, J.M.; Dillard, T.A.; Phillips, Y.Y. Arm span-height relationships in patients referred for spirometry. Am. J. Resp. Crit. Care Med. 1996, 154, 533–536. [Google Scholar] [CrossRef]
- Cristofaro, R.L.; Hoek, K.J.; Bonnett, C.A.; Brown, J.C. Operative treatment of spine deformity in Osteogenesis Imperfecta. Clin. Orthop. 1979, 139, 40–48. [Google Scholar] [CrossRef]
- Semler, O.; Beccard, R.; Palmisano, D.; Demant, A.; Fricke, O.; Schoenau, E.; Koerber, F. Reshaping of vertebrae during treatment with neridronate or pamidronate in children with Osteogenesis Imperfecta. Horm. Res. Paediatr. 2011, 76, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Palomo, T.; Fassier, F.; Ouellet, J.; Sato, A.; Montpetit, K.; Glorieux, F.H.; Rauch, F. Intravenous bisphosphonate therapy of young children with Osteogenesis Imperfecta: Skeletal findings during follow up throughout the growing years. J. Bone Miner. Res. 2015, 30, 2150–2157. [Google Scholar] [CrossRef] [PubMed]
- Donzelli, S.; Poma, S.; Balzarini, L.; Borboni, A.; Respizzi, S.; Villafane, J.H.; Zaina, F.; Negrini, S. State of the art of current 3-D scoliosis classifications: A systematic review from a clinical perspective. J. Neuroeng. Rehabil. 2015, 16, 91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wessberg, M.D.; Danielson, M.D.; Willén, M.D. Comparison of Cobb angles in idiopathic scoliosis on standing radiographs and supine axially loaded MRI. Spine 2006, 31, 3039–3044. [Google Scholar] [CrossRef]
Description of the Samples Analysed | |||||
---|---|---|---|---|---|
Osteogenesis Imperfecta | Control Sample | ||||
Median | IQR * | Median | IQR * | p-value ** | |
Age (years) | 42 | 31.5–53.3 | 58 | 50.3–64.8 | 0.012 |
Bodyheight (cm) | 135 | 118.8–145.5 | 173.5 | 169.5–176.9 | <0.001 |
Bodyweight (kg) | 49.5 | 40.5–55.8 | 82 | 72.6–87.4 | 0.002 |
Body mass index (kg/m2) | 29.3 | 22.7–34.0 | 26.7 | 24.9–28.3 | 0.396 |
FVC (L) | 2.1 | 1.2–2.6 | 4.9 | 3.9–5.1 | <0.001 |
FEV1 (L) | 2 | 1.1–2.4 | 3.9 | 2.9–4.1 | 0.001 |
FVC, % pred. (%) | 89.5 | 70.9–119.7 | 109.8 | 103.7–118.3 | 0.150 |
FEV1, % pred. (%) | 98.8 | 77.5–136.0 | 109.31 | 104.4–112.8 | 0.580 |
Cobb Angle Values Obtained in Subjects Analysed | ||||
---|---|---|---|---|
Osteogenesis Imperfecta | ||||
Thoracic Kyphosis | Thoracic Scoliosis | |||
Median * | IQR ** | Median * | IQR ** | |
Inspiration | 28.5 | 22.1–31.9 | 22.5 | 11.3–33.7 |
Expiration | 29.8 | 23.9–35.2 | 15.2 | 11.5–33.1 |
p-value | 0.285 | 0.407 | ||
Control Subjects | ||||
Thoracic Kyphosis | Thoracic Scoliosis | |||
Median * | IQR ** | Median * | IQR ** | |
Inspiration | 28.9 | 24.3–33.6 | - | - |
Expiration | 30.8 | 24.7–34.5 | - | - |
p-value | 0.597 | - |
Correlation Analysis between Spirometry Values and Kyphosis Values | ||||
---|---|---|---|---|
Inspiration | ||||
Osteogenesis Imperfecta | Control Subjects | |||
r | p-value | r | p-value | |
FVC (L) | −0.039 | 0.942 | −0.311 | 0.241 |
FEV1 (L) | −0.016 | 0.976 | −0.171 | 0.527 |
FVC, % pred. (%) | 0.617 | 0.192 | −0.043 | 0.875 |
FEV1, % pred. (%) | 0.570 | 0.238 | 0.197 | 0.465 |
Expiration | ||||
Osteogenesis Imperfecta | Control Subjects | |||
r | p-value | r | p-value | |
FVC (L) | 0.597 | 0.211 | −0.328 | 0.215 |
FEV1 (L) | 0.637 | 0.177 | −0.195 | 0.470 |
FVC, % pred. (%) | 0.734 | 0.097 | −0.029 | 0.915 |
FEV1, % pred. (%) | 0.690 | 0.129 | 0.189 | 0.484 |
Regression Analysis between Shape Data and Respiratory Variables | ||||
---|---|---|---|---|
Osteogenesis Imperfecta | ||||
Inspiration | Expiration | |||
% predicted | p-value | % predicted | p-value | |
FVC (L) | 14.5 | 0.696 | 15.9 | 0.621 |
FEV1 (L) | 14.8 | 0.674 | 15.6 | 0.651 |
FVC, % pred. (%) | 22.4 | 0.323 | 18.9 | 0.514 |
FEV1, % pred. (%) | 20.5 | 0.376 | 17.6 | 0.588 |
Control Subjects | ||||
Inspiration | Expiration | |||
% predicted | p-value | % predicted | p-value | |
FVC (L) | 4.5 | 0.640 | 5.4 | 0.510 |
FEV1 (L) | 4.0 | 0.707 | 4.4 | 0.672 |
FVC, % pred. (%) | 3.5 | 0.868 | 3.2 | 0.883 |
FEV1, % pred. (%) | 5.5 | 0.505 | 5.2 | 0.530 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ruiz, J.M.; Palancar, C.A.; Mata Escolano, F.; Llido, S.; Torres-Sanchez, I.; García-Río, F.; Bastir, M.; Sanchis-Gimeno, J.A. The Role of the Thoracic Spine during Breathing in Osteogenesis Imperfecta: A Combined Traditional Morphometry and 3D Geometric Morphometrics Research. Osteology 2022, 2, 1-10. https://doi.org/10.3390/osteology2010001
González-Ruiz JM, Palancar CA, Mata Escolano F, Llido S, Torres-Sanchez I, García-Río F, Bastir M, Sanchis-Gimeno JA. The Role of the Thoracic Spine during Breathing in Osteogenesis Imperfecta: A Combined Traditional Morphometry and 3D Geometric Morphometrics Research. Osteology. 2022; 2(1):1-10. https://doi.org/10.3390/osteology2010001
Chicago/Turabian StyleGonzález-Ruiz, José María, Carlos A. Palancar, Federico Mata Escolano, Susanna Llido, Isabel Torres-Sanchez, Francisco García-Río, Markus Bastir, and Juan A. Sanchis-Gimeno. 2022. "The Role of the Thoracic Spine during Breathing in Osteogenesis Imperfecta: A Combined Traditional Morphometry and 3D Geometric Morphometrics Research" Osteology 2, no. 1: 1-10. https://doi.org/10.3390/osteology2010001
APA StyleGonzález-Ruiz, J. M., Palancar, C. A., Mata Escolano, F., Llido, S., Torres-Sanchez, I., García-Río, F., Bastir, M., & Sanchis-Gimeno, J. A. (2022). The Role of the Thoracic Spine during Breathing in Osteogenesis Imperfecta: A Combined Traditional Morphometry and 3D Geometric Morphometrics Research. Osteology, 2(1), 1-10. https://doi.org/10.3390/osteology2010001