Graft Reaction of Furfural with Polyvinyl Chloride and Its Effect on Thermal Stability of Polyvinyl Chloride
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Experimental Procedure
2.3. Characterization
3. Results and Discussion
3.1. Structural Characterization
3.1.1. UV–Visible Absorbance
3.1.2. Photoluminescence Study
3.1.3. FT-IR Analysis
3.1.4. Raman Spectroscopy
3.1.5. Nuclear Magnetic Hydrogen Spectrum
3.2. Thermal Stability
3.2.1. Congo Red Static Experiment
3.2.2. Thermogravimetric Analysis
3.3. Optimization of Grafted Reaction Conditions for FF-g-PVC
4. Conclusions
- (1)
- Microwave irradiation can promote the grafting reaction between furfural and PVC. The grafting rate under water bath heating is only 1.808‰, while the grafting rate achieved through microwave irradiation is 57.76‰. The optimal reaction conditions are as follows: a PVC/FF/Zn ratio of 1:1:0.9, with microwave irradiation at 40 °C for 20 min.
- (2)
- In the first stage of pyrolysis, the bond energy of the hydroxyl group is low, making it easy to break off; the fracture rate of primary alcohols is high, and the activation energy is slightly reduced. In the second stage of pyrolysis, the degree of cleavage of the hydroxyl group and the adjacent carbon–carbon double bond increases with temperature. This leads to a greater degree of cyclization, aromatization, and condensation, resulting in a 47.64% increase in activation energy for the second stage of pyrolysis.
- (3)
- In this experiment, a furan ring was grafted onto PVC through a chemical reaction. The introduction of a furan ring brought many new functions to the PVC molecular chain, such as giving PVC fluorescent luminescence characteristics; in addition, furan rings can be subjected to a REDOX reaction by through photocatalysis. The aromatic properties of furan rings can lead to electrophilic addition reactions such as halogenation, nitration, and sulfonation, and a D-A addition reaction occurs with dienophile (e.g., maleimide).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ait-Touchente, Z.; Khellaf, M.; Raffin, G.; Lebaz, N.; Elaissari, A. Recent advances in polyvinyl chloride (PVC) recycling. Adv. Technol. 2024, 35, e6228. [Google Scholar] [CrossRef]
- Moulay, S. Chemical modification of poly(vinyl chloride)—Still on the run. Prog. Polym. Sci. 2010, 35, 303–331. [Google Scholar] [CrossRef]
- Kameda, T.; Ono, M.; Grause, G.; Mizoguchi, T.; Yoshioka, T. Chemical modification of poly(vinyl chloride) by nucleophilic substitution. Polym. Degrad. Stab. 2009, 94, 107–112. [Google Scholar] [CrossRef]
- Taurino, R.; Sciancalepore, C.; Collini, L.; Bondi, M.; Bondioli, F. Functionalization of PVC by chitosan addition: Compound stability and tensile properties. Compos. Part B Eng. 2018, 149, 240–247. [Google Scholar] [CrossRef]
- Sun, J.; Bai, M.; Wang, R.; He, L.; Li, K. Effect of Ethylene Bismaleimide Acid Derivatives on Thermal Stability and Repair Performance of Polyvinyl Chloride. Polym. Mater. Sci. Eng. 2019, 35, 76–87. [Google Scholar] [CrossRef]
- Leadbitter, J. PVC and sustainability. Prog. Polym. Sci. 2002, 27, 2197–2226. [Google Scholar] [CrossRef]
- Cao, R.; Zhang, M.-Q.; Jiao, Y.; Li, Y.; Sun, B.; Xiao, D.; Wang, M.; Ma, D. Co-upcycling of polyvinyl chloride and polyesters. Nat. Sustain. 2023, 6, 1685–1692. [Google Scholar] [CrossRef]
- Li, B.; Cao, P.-F.; Saito, T.; Sokolov, A.P. Intrinsically Self-Healing Polymers: From Mechanistic Insight to Current Challenges. Chem. Rev. 2023, 123, 701–735. [Google Scholar] [CrossRef]
- Darwish, S.A.; Abdel-Monem, R.A.; Rabie, S.T.; El-Liethy, M.A.; Hemdan, B.A.; Gaballah, S.T. Facile strategy for the synthesis of antimicrobial poly(vinyl chloride) functionalized with benzimidazole. Vinyl Addit. Technol. 2024, 31, 94–108. [Google Scholar] [CrossRef]
- Meng, X.; Li, W.; Tian, Y.; Sun, C.; Huang, J.; Liu, X. Synthesis of trioctyl polyvinyl chloride ammonium, membrane extraction properties, and electrodriven mass transfer behavior of Chromium (VI). Sep. Purif. Technol. 2023, 320, 1383–5866. [Google Scholar] [CrossRef]
- Lv, X.; Luo, X.; Cheng, X.; Liu, J.; Li, C.; Shuai, L. Production of Hydroxymethylfurfural Derivatives From Furfural Derivatives via Hydroxymethylation. Front. Bioeng. Biotechnol. 2022, 10, 851668. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Zahoor, A.F.; Ahmad, S.; Akhtar, R.; Sikandar, S. Reformatsky reaction as a key step in the synthesis of natural products: A review. Synth. Commun. 2022, 52, 317–345. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.; Gu, L.; Li, G.; Ding, Y.; Dong, L. Preparation of rare earth complexes with curcumin and their stabilization for PVC—ScienceDirect. Polym. Degrad. Stab. 2020, 184, 109480. [Google Scholar] [CrossRef]
- El-Naggar, A.M.; Heiba, Z.K.; Kamal, A.M.; Abd-Elkader, O.H.; Mohamed, M.B. Impact of ZnS/Mn on the Structure, Optical, and Electric Properties of PVC Polymer. Polymers 2023, 15, 2091. [Google Scholar] [CrossRef] [PubMed]
- El-Hachemi, B.; Miloud, S.; Sabah, M.; Souad, T.; Zineddine, O.; Boubekeur, B.; Toufik, S.M.; Ouahiba, H. Structural, electrical and optical properties of PVC/ZnTe nanocomposite thin films. Inorg. Organomet. Polym. Mater. 2021, 15, 3637–3648. [Google Scholar] [CrossRef]
- Taha, T.A. Optical and thermogravimetric analysis of-Pb3O4/PVC nanocomposites. Mater. Sci. 2017, 28, 12108–12114. [Google Scholar] [CrossRef]
- Meng, X.; Song, Y.; Lv, Y.; Xin, X.; Ren, T.; Wang, X. Study on stable mass transfer and enrichment of phenol by 1-octanol/kerosene/polyvinyl chloride polymer inclusion membrane. Environ. Pollut. 2019, 253, 1100–1106. [Google Scholar] [CrossRef]
- Aziz, S.B.; Ahmed, H.M.; Hussein, A.M.; Fathulla, A.B.; Wsw, R.M.; Hussein, R.T. Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites. Mater. Sci. Mater. Electron. 2015, 26, 8022–8028. [Google Scholar] [CrossRef]
- Xie, L.; Luo, S.; Liu, Y. Automatic Identification of Individual Nanoplastics by Raman Spectroscopy Based on Machine Learning. Environ. Sci. Technol. EST 2023, 57, 18203–18214. [Google Scholar] [CrossRef]
- Lee, T.; Oh, J.-I.; Baek, K.; Tsang, Y.F.; Kim, K.-H.; Kwon, E.E. Compositional modification of pyrogenic products using CaCO3 and CO2 from the thermolysis of polyvinyl chloride (PVC). Green Chem. 2018, 20, 1583–1593. [Google Scholar] [CrossRef]
- Wu, J.; Papanikolaou, K.G.; Cheng, F.; Addison, B.; Cuthbertson, A.A.; Mavrikakis, M.; Huber, G.W. Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC. ACS Sustain. Chem. Eng. 2024, 19, 12. [Google Scholar] [CrossRef]
- Zhou, J.; Gui, B.; Qiao, Y.; Zhang, J.; Wang, W.; Yao, H.; Yu, Y.; Xu, M. Understanding the pyrolysis mechanism of polyvinylchloride (PVC) by characterizing the chars produced in a wire-mesh reactor. Fuel 2016, 166, 526–532. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Hu, E.; Qu, R.; Li, S.; Xiong, Q. Interaction and characteristics of furfural residues and polyvinyl chloride in fast co-pyrolysis. Front. Chem. Sci. Eng. 2024, 18, 142. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, G.; Wang, S.; Zhang, H.; Xu, F. TG-FTIR and Py-GC/MS study of the pyrolysis mechanism and composition of volatiles from flash pyrolysis of PVC. Energy Inst. 2020, 774, 2362–2370. [Google Scholar] [CrossRef]
- Azam, M.; Ashraf, A.; Jahromy, S.S.; Miran, S.; Raza, N.; Wesenauer, F.; Jordan, C.; Harasek, M.; Winter, F. Co-Combustion Studies of Low-Rank Coal and Refuse-Derived Fuel: Performance and Reaction Kinetics. Energies 2021, 14, 3796. [Google Scholar] [CrossRef]
- Franco-Urquiza, E.A.; May-Crespo, J.F.; Velázquez, C.A.E.; Mora, R.P.; García, P.G. Thermal Degradation Kinetics of ZnO/polyester Nanocomposites. Polymers 2020, 12, 1753. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, D.; Eloussifi, H.; Farjas, J.; Roura, P.; Dammak, M. Thermal gradients in thermal analysis experiments: Criterions to prevent inaccuracies when determining sample temperature and kinetic parameters. Thermochim. Acta 2014, 589, 37–46. [Google Scholar] [CrossRef]
- Goyal, H.; Chen, T.Y.; Chen, W. A review of microwave-assisted process intensified multiphase reactors. Chem. Eng. J. 2022, 430, 133183. [Google Scholar] [CrossRef]
PVC | FF-g-PVC | ||||
---|---|---|---|---|---|
No. | δH (J, Hz) | Substituent | No. | δH (J, Hz) | Substituent |
1 | 0.97–0.79 (m, 6H) 1.29 (s, 13H), 1.56 (s, 4H) | -CH3 | 1 | 1.03–0.67 (m, 7H) 1.32 (d, 13H) | -CH3 |
2 | 1.89 (s, 4H), 1.71 (s, 106H) 2.64–1.96 (m, 45H) 2.76 (s, 5H), 2.88 (s, 1H) | -CH2- | 2 | 2.57–1.97 (m, 73H) 2.82 (d, 2H), 1.73 (s, 126H) | -CH2- |
3 | 4.08 (d, 2H) 4.86–4.26 (m, 198H) | -CHCl- | 3 | 4.08 (d, 7H) 4.72–4.28 (m, 192H) | -CHCl- |
4 | 3.40 (s, 2H), 3.58 (s, 91H) 3.76 (s, 4H), 3.89 (d, 4H) | Abnormal structure | 4 | 3.34 (d, 13H) 3.58 (s, 89H), 3.76 (s, 18H) 3.84 (s, 12H) | Abnormal structure |
5 | 5.33 (d, 4H) | -CH-OH | |||
6 | 5.75 (s, 4H) | -CH-OH | |||
7 | 6.64 (dd, 4H) | The second H | |||
8 | 7.29 (d, 4H) | The first H | |||
9 | 7.87 (d, 4H) | The third H |
Sample | 1st | 2nd | 3rd | AVG |
---|---|---|---|---|
PVC | 4.000 min | 4.100 min | 4.020 min | 4.040 min |
FF-g-PVC | 5.433 min | 5.833 min | 5.800 min | 5.686 min |
Sample | Heating Rate/(K/min) | First Stage (K) | Second Stage (K) | ||||
---|---|---|---|---|---|---|---|
T onset | T max | T end | T onset | T max | T end | ||
PVC | 5 | 541.49 | 550.61 | 569.73 | 685.43 | 726.61 | 761.12 |
10 | 543.43 | 562.61 | 599.11 | 689.18 | 730.61 | 773.69 | |
15 | 551.22 | 568.56 | 597.69 | 695.24 | 746.53 | 781.78 | |
FF-g-PVC | 5 | 507.91 | 558.46 | 570.64 | 702.50 | 732.46 | 759.02 |
10 | 511.57 | 564.49 | 596.54 | 711.07 | 742.39 | 771.10 | |
15 | 523.98 | 574.84 | 612.33 | 701.86 | 747.84 | 831.67 |
E/(kJ/mol−1) | PVC | FF-g-PVC |
---|---|---|
The first stage | 149.0 | 100.7 |
The second stage | 199.3 | 294.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, M.; Li, K. Graft Reaction of Furfural with Polyvinyl Chloride and Its Effect on Thermal Stability of Polyvinyl Chloride. Organics 2025, 6, 12. https://doi.org/10.3390/org6010012
Kou M, Li K. Graft Reaction of Furfural with Polyvinyl Chloride and Its Effect on Thermal Stability of Polyvinyl Chloride. Organics. 2025; 6(1):12. https://doi.org/10.3390/org6010012
Chicago/Turabian StyleKou, Mengying, and Kanshe Li. 2025. "Graft Reaction of Furfural with Polyvinyl Chloride and Its Effect on Thermal Stability of Polyvinyl Chloride" Organics 6, no. 1: 12. https://doi.org/10.3390/org6010012
APA StyleKou, M., & Li, K. (2025). Graft Reaction of Furfural with Polyvinyl Chloride and Its Effect on Thermal Stability of Polyvinyl Chloride. Organics, 6(1), 12. https://doi.org/10.3390/org6010012