Synthesis and Biological Evaluation of Salicylaldehyde-Derived Secondary Amines: Antioxidant, Anti-Inflammatory, and Insecticidal Activities with DFT Insights
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Synthesis
2.2.1. Synthesis of Imine Intermediates a–f
2.2.2. Synthesis of Compounds 1–6
2.3. Biological Evaluation
2.3.1. Antioxidant Activity
ABTS Assay
Phenanthroline Assay
2.3.2. Anti-Inflammatory Activity
2.3.3. Insecticidal Activity
Test Insect
Contact Toxicity Assay
Statistical Analysis
2.4. Quantum Chemistry Calculations
3. Results and Discussion
3.1. Synthesis
3.2. Biological Activity Evaluation
3.2.1. Antioxidant Activity
3.2.2. Anti-Inflammatory Activity
3.2.3. Insecticidal Activity
3.3. Quantum Chemistry Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krátký, M.; Dzurková, M.; Janoušek, J.; Konečná, K.; Trejtnar, F.; Stolaříková, J.; Vinšová, J. Sulfadiazine Salicylaldehyde-Based Schiff Bases: Synthesis, Antimicrobial Activity and Cytotoxicity. Molecules 2017, 22, 1573. [Google Scholar] [CrossRef] [PubMed]
- Montaser, A.S.; Wassel, A.R.; Al-Shaye’a, O.N. Synthesis, characterization and antimicrobial activity of Schiff bases from chitosan and salicylaldehyde/TiO2 nanocomposite membrane. Int. J. Biol. Macromol. 2019, 124, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Yorur-Goreci, C.; Altas-Kiymaz, N.; Peksel, A.; Bilgin-Eran, B.; Sonmez, M. New p-Substituted Salicylaldehyde Phenylhydrazone Derivatives: Synthesis, Characterization, and Antioxidant Activities. Sci. Pharm. 2014, 82, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Selaković, S.; Rodić, M.V.; Novaković, I.; Matić, I.Z.; Stanojković, T.; Pirković, A.; Živković, L.; Spremo-Potparević, B.; Milčić, M.; Medaković, V.; et al. Cu(ii) complexes with a salicylaldehyde derivative and α-diimines as co-ligands: Synthesis, characterization, biological activity. Experimental and theoretical approach. Dalton Trans. 2024, 53, 2770–2788. [Google Scholar] [CrossRef]
- Koschier, E.H.; Hoffmann, D.; Riefler, J. Influence of salicylaldehyde and methyl salicylate on post-landing behaviour of Frankliniella occidentalis Pergande. J. Appl. Entomol. 2007, 131, 362–367. [Google Scholar] [CrossRef]
- Kim, J.H.; Campbell, B.C.; Mahoney, N.; Chan, K.L.; Molyneux, R.J. Chemosensitization of Aflatoxigenic Fungi to Antimycin A and Strobilurin Using Salicylaldehyde, a Volatile Natural Compound Targeting Cellular Antioxidation System. Mycopathologia 2011, 171, 291–298. [Google Scholar] [CrossRef] [PubMed]
- He, H.-W.; Xu, D.; Wu, K.-H.; Lu, Z.-Y.; Liu, X.; Xu, G. Discovery of novel salicylaldehyde derivatives incorporating an α-methylene-γ-butyrolactone moiety as fungicidal agents. Pest Manag. Sci. 2023, 79, 5015–5028. [Google Scholar] [CrossRef]
- Pelttari, E.; Karhumäki, E.; Langshaw, J.; Peräkylä, H.; Elo, H. Antimicrobial Properties of Substituted Salicylaldehydes and Related Compounds. Z. Naturforschung C 2007, 62, 487–497. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Wu, Y.; Song, S.; Feng, J.; Zhang, X. Natural α-methylenelactam analogues: Design, synthesis and evaluation of α-alkenyl-γ and δ-lactams as potential antifungal agents against Colletotrichum orbiculare. Eur. J. Med. Chem. 2017, 130, 286–307. [Google Scholar] [CrossRef]
- Resende, D.I.S.P.; Durães, F.; Maia, M.; Sousa, E.; Pinto, M.M.M. Recent advances in the synthesis of xanthones and azaxanthones. Org. Chem. Front. 2020, 7, 3027–3066. [Google Scholar] [CrossRef]
- Kirilmis, C.; Ahmedzade, M.; Servi, S.; Koca, M.; Kizirgil, A.; Kazaz, C. Synthesis and antimicrobial activity of some novel derivatives of benzofuran: Part 2. The synthesis and antimicrobial activity of some novel 1-(1-benzofuran-2-yl)-2-mesitylethanone derivatives. Eur. J. Med. Chem. 2008, 43, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.; Shen, S.; Ghiviriga, I.; Miller, S.A. Sustainable polyvinyl acetals from bioaromatic aldehydes. Polym. Chem. 2017, 8, 5049–5059. [Google Scholar] [CrossRef]
- Huang, J.; Zhu, H.; Liang, H.; Lu, J. Salicylaldehyde-functionalized block copolymer nano-objects: One-pot synthesis via polymerization-induced self-assembly and their simultaneous cross-linking and fluorescence modification. Polym. Chem. 2016, 7, 4761–4770. [Google Scholar] [CrossRef]
- Wu, W.; Ouyang, Q.; He, L.; Huang, Q. Optical and thermal properties of polymethyl methacrylate (PMMA) bearing phenyl and adamantyl substituents. Colloids Surf. A Physicochem. Eng. Asp. 2022, 653, 130018. [Google Scholar] [CrossRef]
- Anju, V.P.; Narayanankutty, S.K. Impact of Bis-(3-triethoxysilylpropyl)tetrasulphide on the properties of PMMA/Cellulose composite. Polymer 2017, 119, 224–237. [Google Scholar] [CrossRef]
- Wong, K.W.; Teh, S.S.; Law, K.P.; Ismail, I.S.; Sato, K.; Mase, N.; Mah, S.H. Synthesis of benzylated amine-substituted xanthone derivatives and their antioxidant and anti-inflammatory activities. Arch. Der Pharm. 2023, 356, 2200418. [Google Scholar] [CrossRef] [PubMed]
- Lambert, W.T.; Buysse, A.M.; Wessels, F.J. Discovery of novel insecticidal 3-aminopyridyl ureas. Pest Manag. Sci. 2020, 76, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Djafarou, S.; Mermer, A.; Barut, B.; Yılmaz, G.T.; Amine khodja, I.; Boulebd, H. Synthesis and evaluation of the antioxidant and anti-tyrosinase activities of thiazolyl hydrazone derivatives and their application in the anti-browning of fresh-cut potato. Food Chem. 2023, 414, 135745. [Google Scholar] [CrossRef] [PubMed]
- Boulebd, H.; Tam, N.M.; Mechler, A.; Vo, Q.V. Substitution effects on the antiradical activity of hydralazine: A DFT analysis. New J. Chem. 2020, 44, 16577–16583. [Google Scholar] [CrossRef]
- Boulebd, H.; Khodja, I.A.; Bay, M.V.; Hoa, N.T.; Mechler, A.; Vo, Q.V. Thermodynamic and Kinetic Studies of the Radical Scavenging Behavior of Hydralazine and Dihydralazine: Theoretical Insights. J. Phys. Chem. B 2020, 124, 4123–4131. [Google Scholar] [CrossRef]
- Hamel, D.; Rozman, V.; Liška, A. Storage of Cereals in Warehouses with or without Pesticides. Insects 2020, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Duarte, S.; Magro, A.; Barros, G.; Carvalho, M.O. Stored products insects in Portugal—New data and overview. J. Stored Prod. Res. 2024, 105, 102230. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, L.C.G. Einstein–Cartan non-supersymmetric spin-polarised nucleons wall dynamos. Ann. Phys. 2021, 431, 168558. [Google Scholar] [CrossRef]
- Kandikattu Karthik, K.K.; Kumar, P.B.R.; Priya, R.V.; Kumar, K.S.; Rathore, R.S.B. Evaluation of anti-inflammatory activity of Canthium parviflorum by in-vitro method. Indian J. Res. Pharm. Biotechnol. 2013, 1, 729–731. [Google Scholar]
- Preetha, G.; Stanley, J.; Suresh, S. Toxicity of insecticides to wolf spider (Pardosa pseudoannulata) and rice leaf folder (Cnaphalocrocis medinalis): Assessing the risk of insecticides on spiders in the rice ecosystem. Int. J. Pest Manag. 2023, 1–10. [Google Scholar] [CrossRef]
- Abbott, W.S. A Method of Computing the Effectiveness of an Insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Boulebd, H. Is cannabidiolic acid an overlooked natural antioxidant? Insights from quantum chemistry calculations. New J. Chem. 2022, 46, 162–168. [Google Scholar] [CrossRef]
- Boulebd, H.; Pereira, D.M.; Amine Khodja, I.; Hoa, N.T.; Mechler, A.; Vo, Q.V. Assessment of the free radical scavenging potential of cannabidiol under physiological conditions: Theoretical and experimental investigations. J. Mol. Liq. 2022, 346, 118277. [Google Scholar] [CrossRef]
- Iskander, M.N.; Andrews, P.R. Synthesis of 3,4-dihydro-3-(p-methylphenyl)-1,3,2H-benzoxazine: An undergraduate organic chemistry experiment. J. Chem. Educ. 1985, 62, 913. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, W.; Zhu, Z.; Liu, H. Synthesis of 2,3-diaryl-3,4-dihydro-2H-1,3-benzoxazines and their fungicidal activities. J. Heterocycl. Chem. 2011, 48, 255–260. [Google Scholar] [CrossRef]
- Waltz, F.; Pillette, L.; Verhaeghe, E.; Ambroise, Y. Synthesis and Structure—Activity Relationships of a Class of Sodium Iodide Symporter Function Inhibitors. ChemMedChem 2011, 6, 1775–1777. [Google Scholar] [CrossRef] [PubMed]
- Kamble, R.D.; Hese, S.V.; Meshram, R.J.; Kote, J.R.; Gacche, R.N.; Dawane, B.S. Green synthesis and in silico investigation of dihydro-2H-benzo[1,3]oxazine derivatives as inhibitors of Mycobacterium tuberculosis. Med. Chem. Res. 2015, 24, 1077–1088. [Google Scholar] [CrossRef]
- Jung, J.-M.; Byeon, D.-h.; Kim, S.-H.; Sunghoon, J.; Lee, W.-H. Estimating economic damage to cocoa bean production with changes in the spatial distribution of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) in response to climate change. J. Stored Prod. Res. 2020, 89, 101681. [Google Scholar] [CrossRef]
- Wakil, W.; Kavallieratos, N.G.; Usman, M.; Gulzar, S.; El-Shafie, H.A.F. Detection of Phosphine Resistance in Field Populations of Four Key Stored-Grain Insect Pests in Pakistan. Insects 2021, 12, 288. [Google Scholar] [CrossRef]
- Boulebd, H. Comparative study of the radical scavenging behavior of ascorbic acid, BHT, BHA and Trolox: Experimental and theoretical study. J. Mol. Struct. 2020, 1201, 127210. [Google Scholar] [CrossRef]
Compound | ABTS Assay IC50 (µM) | Phenanthroline Assay A0.5 (µM) | BSA Denaturation Assay IC50 (µM) |
---|---|---|---|
1 | 14.86 ± 0.81 d | 21.08 ± 6.30 d | 1734.72 ± 17.66 e |
2 | 5.14 ± 0.11 a | 16.19 ± 1.55 bcd | 839.64 ± 11.13 c |
3 | 15.90 ± 0.49 d | 31.73 ± 4.72 e | 1287.09 ± 4.70 e |
4 | 9.91 ± 0.19 c | 17.13 ± 1.15 cd | SAT1 |
5 | 9.73 ± 0.20 c | 9.42 ± 1.02 ab | 699.72 ± 7.36 b |
6 | 9.64 ± 0.52 c | 12.55 ± 0.38 abc | SAT1 |
BHA | 7.16 ± 1.66 ab | 7.32 ± 0.83 a | – |
BHT | 8.22 ± 0.45 bc | 6.31 ± 0.83 a | – |
Diclofenac | – | – | 128.83 ± 0.08 |
Mortality (%) | |||||||
Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 | |
Control (Acetone) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
1 | 16.67 ± 3.33 b | 46.66 ± 3.0 a | 50.0 ± 0.0 b | 66.57 ± 3.33 a | 70.0 ± 0.0 a | 70.0 ± 0.0 a | 73.31 ± 3.33 a |
2 | 3.33 ± 1.33 c | 3,33 ± 1.33 c | 6.67 ± 3.33 d | 6.67 ± 3.33 c | 16.67 ± 2.21 c | 26.67 ± 3.0 c | 50.0 ± 0.0 b |
3 | 0.0 | 26.67 ± 3.33 b | 33.33 ± 3.33 c | 43.30 ± 3.21 b | 53.21 ± 3.33 b | 56.67 ± 3.33 ab | 56.67 ± 2.21 b |
4 | 3.33 ± 1.33 c | 3.33 ± 1.33 c | 10.0 ± 0.0 d | 16.66 ± 3.33 c | 23.30 ± 3.21 c | 43.66 ± 3.33 bc | 63.0 ± 2.87 ab |
5 | 0.0 | 3.33 ± 1.33 c | 16.60 ± 3.33 d | 33.33 ± 3.21 b | 36.67 ± 1.21 b | 43.28 ± 3.33 bc | 56.60 ± 3.33 b |
6 | 43.0 ± 3.33 a | 56.67 ± 3.33 a | 66.66 ± 3.37 a | 66.66 ± 3.37 a | 70.0 ± 5.7 a | 70.0 ± 5.7 a | 76.67 ± 3.33 a |
F-value | 38.80 | 51.60 | 77.65 | 56.28 | 39.77 | 22.17 | 11.72 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derabli, C.; Rahim, N.; Djaba, R.; Aouidi, S.; Bensouici, C.; Hesse, S.; Boulebd, H. Synthesis and Biological Evaluation of Salicylaldehyde-Derived Secondary Amines: Antioxidant, Anti-Inflammatory, and Insecticidal Activities with DFT Insights. Organics 2025, 6, 11. https://doi.org/10.3390/org6010011
Derabli C, Rahim N, Djaba R, Aouidi S, Bensouici C, Hesse S, Boulebd H. Synthesis and Biological Evaluation of Salicylaldehyde-Derived Secondary Amines: Antioxidant, Anti-Inflammatory, and Insecticidal Activities with DFT Insights. Organics. 2025; 6(1):11. https://doi.org/10.3390/org6010011
Chicago/Turabian StyleDerabli, Chamseddine, Noureddine Rahim, Roumaissa Djaba, Sarra Aouidi, Chawki Bensouici, Stephanie Hesse, and Houssem Boulebd. 2025. "Synthesis and Biological Evaluation of Salicylaldehyde-Derived Secondary Amines: Antioxidant, Anti-Inflammatory, and Insecticidal Activities with DFT Insights" Organics 6, no. 1: 11. https://doi.org/10.3390/org6010011
APA StyleDerabli, C., Rahim, N., Djaba, R., Aouidi, S., Bensouici, C., Hesse, S., & Boulebd, H. (2025). Synthesis and Biological Evaluation of Salicylaldehyde-Derived Secondary Amines: Antioxidant, Anti-Inflammatory, and Insecticidal Activities with DFT Insights. Organics, 6(1), 11. https://doi.org/10.3390/org6010011