β-Cyclodextrin Supramolecular Recognition of bis-Cationic Dithienylethenes
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Neilson, B.M.; Bielawski, C.W. Photoswitchable Organocatalysis: Using Light To Modulate the Catalytic Activities of N-Heterocyclic Carbenes. J. Am. Chem. Soc. 2012, 134, 12693–12699. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feringa, B.L. Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor. Science 2011, 331, 1429–1432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, G.; Wang, J. Recycling a Homogeneous Catalyst through a Light-Controlled Phase Tag. Angew. Chem. Int. Ed. 2010, 49, 4425–4429. [Google Scholar] [CrossRef] [PubMed]
- Hecht, S.; Stoll, R.S. Artificial Light-Gated Catalyst Systems. Angew. Chem. Int. Ed. 2010, 49, 5054–5075. [Google Scholar]
- Chi, X.; Ji, X.; Xia, D.; Huang, F. A Dual-Responsive Supra-Amphiphilic Polypseudorotaxane Constructed from a Water-Soluble Pillar [7] arene and an Azobenzene-Containing Random Copolymer. J. Am. Chem. Soc. 2015, 137, 1440–1443. [Google Scholar] [CrossRef]
- Jochum, F.D.; Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 2013, 42, 7468–7483. [Google Scholar] [CrossRef]
- Pearson, D.; Abell, A.D. Structural Optimization of Photoswitch Ligands for Surface Attachment of α-Chymotrypsin and Regulation of Its Surface Binding. Chem. Eur. J. 2010, 16, 6983–6992. [Google Scholar] [CrossRef]
- Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K.V.; Aoki, H.; Ito, S.; et al. Photo Gel–Sol/Sol–Gel Transition and Its Patterning ofa Supramolecular Hydrogel as Stimuli-Responsive Biomaterials. Chem. Eur. J. 2008, 14, 3977–3986. [Google Scholar] [CrossRef]
- Wyman, G.M. The cis-trans isomerization of conjugated compounds. Chem. Rev. 1955, 55, 625–657. [Google Scholar] [CrossRef]
- Bortolus, P.; Monti, S. Cis-Trans Photoisomerization of Azobenzene-Cyclodextrin Inclusion Complexes. J. Phys. Chem. 1987, 91, 5046–5050. [Google Scholar] [CrossRef]
- Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. Photoswitchable Supramolecular Hydrogels Formed by Cyclodextrins and Azobenzene Polymers. Angew. Chem. Int. Ed. 2010, 49, 7461–7464. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Nielsen, S.R.; Uyar, T.; Zhang, S.; Zafar, A.; Dong, M.; Besenbacher, F. Electrospun UV-responsive supramolecular nanofibers from a cyclodextrin–azobenzene inclusion complex. J. Mater. Chem. C 2013, 1, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Yan, H.; Ang, C.Y.; Nguyen, K.T.; Li, M.; Zhao, Y. Photoswitchable Supramolecular Catalysis by Interparticle Host–Guest Competitive Binding. Chem. Eur. J. 2012, 18, 13979–13983. [Google Scholar] [CrossRef] [PubMed]
- Giordani, S.; Cejas, M.A.; Raymo, F.M. Photoinduced proton exchange between molecular switches. Tetrahedron 2004, 60, 10973–10981. [Google Scholar] [CrossRef]
- Raymo, F.M.; Giordani, S. Signal Communication between Molecular Switches. Org. Lett. 2001, 3, 3475–3478. [Google Scholar] [CrossRef]
- Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and Spirooxazines for Memories and Switches. Chem. Rev. 2000, 100, 1741–1753. [Google Scholar] [CrossRef]
- Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S. Photochromism of Diarylethene Molecules and Crystals: Memories, Switches, and Actuators. Chem. Rev. 2014, 114, 12174–12277. [Google Scholar] [CrossRef]
- Bianchini, G.; Strukul, G.; Wass, D.F.; Scarso, A. Photomodulable phosphines incorporating diarylethene moieties. RSC Adv. 2015, 5, 10795–10798. [Google Scholar] [CrossRef]
- Neilson, B.M.; Bielawski, C.W. Photoswitchable metal-mediated catalysis: Remotely tuned alkene and alkyne hydroborations. J. Am. Chem. Soc. 2013, 32, 3121–3128. [Google Scholar] [CrossRef]
- Neilson, B.M.; Lynch, V.M.; Bielawski, C.W. Photoswitchable N-Heterocyclic Carbenes: Using Light to Modulate Electron-Donating Properties. Angew. Chem. Int. Ed. 2011, 50, 10322–10326. [Google Scholar] [CrossRef]
- Roberts, M.N.; Carling, C.J.; Nagle, J.K.; Branda, N.R.; Wolf, M.O. Successful bifunctional photoswitching and electronic communication of two platinum (II) acetylide bridged dithienylethenes. J. Am. Chem. Soc. 2009, 131, 16644–16645. [Google Scholar] [CrossRef] [PubMed]
- Samachetty, H.D.; Lumieux, V.; Branda, N.R. Modulating chemical reactivity using a photoresponsive molecular switch. Tetrahedron 2008, 64, 8292–8300. [Google Scholar] [CrossRef]
- Samachetty, H.D.; Branda, N.R. Photomodulation of Lewis basicity in a pyridine-functionalized 1,2-dithienylcyclopentene. Chem. Commun. 2005, 2840–2842. [Google Scholar] [CrossRef] [PubMed]
- Sud, D.; McDonald, R.; Branda, N.R. Synthesis and Coordination Chemistry of a Photoswitchable Bis(phosphine) Ligand. Inorg. Chem. 2005, 44, 5960–5962. [Google Scholar] [CrossRef] [PubMed]
- Vlasceanu, A.; Cacciarini, M.; Brøndsted Nielsen, M. Photo/thermochromic macrocycles based on dihydroazulenes, dithienylethenes, and spiropyranes. Tetrahedron 2018, 74, 6635–6646. [Google Scholar] [CrossRef]
- Szacilowski, K. Digital Information Processing in Molecular Systems. Chem. Rev. 2008, 108, 3481–3548. [Google Scholar] [CrossRef] [PubMed]
- Myles, A.J.; Branda, N.R. 1,2-Dithienylethene Photochromes and Non-destructive Erasable Memory. Adv. Funct. Mater. 2002, 12, 167–173. [Google Scholar] [CrossRef]
- Al-Atar, U.; Fernandes, R.; Johnsen, B.; Baillie, D.; Branda, N.R. A photocontrolled molecular switch regulates paralysis in a living organism. J. Am. Chem. Soc. 2009, 131, 15966–15967. [Google Scholar] [CrossRef]
- Yue, C.; Liao, C.; Yang, Z.; Hu, F. Recent Advances in Photoswitchable Cation Chemosensors. Curr. Org. Chem. 2018, 22, 1458–1467. [Google Scholar] [CrossRef]
- Yao, X.; Li, T.; Wang, S.; Ma, X.; Tian, H. A photochromic supramolecular polymer based on bis-p-sulfonatocalix [4] arene recognition in aqueous solution. Chem. Commun. 2014, 50, 7166–7168. [Google Scholar] [CrossRef]
- Mulder, A.; Jukovic, A.; Lucas, L.N.; van Esch, J.; Feringa, B.L.; Huskens, J.; Reinhoudt, D.N. A dithienylethene-tethered β-cyclodextrin dimer as a photoswitchable host. Chem. Commun. 2002, 2734–2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchini, G.; La Sorella, G.; Canever, N.; Strukul, G.; Scarso, A. Efficient isonitrile hydration through encapsulation within a hexameric self-assembled capsule and selective inhibition by a photo-controllable competitive guest. Chem. Commun. 2013, 49, 5322–5324. [Google Scholar] [CrossRef]
- Takeshita, M.; Kato, N.; Kawauchi, S.; Imase, T.; Watanabe, J.; Irie, M. Photochromism of dithienylethenes included in cyclodextrins. J. Org. Chem. 1998, 63, 9306–9313. [Google Scholar] [CrossRef]
- Takeshita, M.; Yamada, M.; Kato, N.; Irie, M. Photochromism of dithienylethene-bis(trimethylammonium) iodide in cyclodextrin cavities. J. Chem. Soc. Perkin Trans. 2000, 2, 619–622. [Google Scholar] [CrossRef]
- Ogino, H. Relatively High-Yield Syntheses of Rotaxanes. Syntheses and Properties of Compounds Consisting of Cyclodextrins Threaded by, -Diaminoalkanes Coordinated to Cobalt(III)- Complexes. J. Am. Chem. Soc. 1981, 103, 1303–1304. [Google Scholar] [CrossRef]
- Harada, A. Cyclodextrin-based molecular machines. Acc. Chem. Res. 2001, 34, 456–464. [Google Scholar] [CrossRef]
- Hashidzume, A.; Yamaguchi, H.; Harada, A. Cyclodextrin Based Rotaxanes: From Rotaxanes to Polyrotaxanes and Further to Functional Materials. Eur. J. Org. Chem. 2019, 2019, 3344–3357. [Google Scholar] [CrossRef]
- Zhang, Q.W.; Zajicek, J.; Smith, B.D. Cyclodextrin Rotaxane with Switchable Pirouetting. Org. Lett. 2018, 20, 2096–2099. [Google Scholar] [CrossRef]
- Pace, T.C.S.; Müller, V.; Li, S.; Lincoln, P.; Andréasson, J. Enantioselective cyclization of photochromic dithienylethenes bound to DNA. Angew. Chem. Int. Ed. 2013, 52, 4393–4396. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Davidson-Rozenfeld, G.; Vàzquez-Gonzàlez, M.; Fadeev, M.; Zhang, J.; Tian, H.; Willner, I. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions. J. Am. Chem. Soc. 2018, 140, 17691–17701. [Google Scholar] [CrossRef]
- Inoue, Y. Annual Reports on NMR Spectroscopy; Academic Press Limited: London, UK, 1993; Volume 27, pp. 59–101. ISBN 0-12-505327-4. [Google Scholar]
- Crini, G. A history of cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Martin Del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 34, 1033–1046. [Google Scholar] [CrossRef]
- Hirose, K. A Practical Guide for the Determination of Binding Constants. J. Inc. Phenom. Macroc. Chem. 2001, 39, 193–209. [Google Scholar] [CrossRef]
- Dunitz, J.D.; Taylor, R. Organic fluorine hardly ever accepts hydrogen bonds. Chem. Eur. J. 1997, 3, 89–98. [Google Scholar] [CrossRef]
- Barbarich, T.J.; Rithner, C.D.; Miller, M.S.; Anderson, O.P.; Strauss, S.H. Significant Inter- and Intramolecular O−H···FC Hydrogen Bonding. J. Am. Chem. Soc. 1999, 121, 4280–4281. [Google Scholar] [CrossRef]
- Chaudhari, S.R.; Mogurampelly, S.; Suryaprakash, N. Engagement of CF3 Group in N–H···F–C Hydrogen Bond in the Solution State: NMR Spectroscopy and MD Simulation Studies. J. Phys. Chem. B 2013, 117, 1123–1129. [Google Scholar] [CrossRef]
- Scheneider, H.J. Hydrogen bonds with fluorine. Studies in solution, in gas phase and by computations, conflicting conclusions from crystallographic analyses. Chem. Sci. 2012, 3, 1381–1394. [Google Scholar] [CrossRef]
- Nourmohammadian, F.; Wu, T.; Branda, N.R. A ‘chemically-gated’ photoresponsive compound as a visible detector for organophosphorus nerve agents. Chem. Commun. 2011, 47, 10954–10956. [Google Scholar] [CrossRef]
Guest@host | D (m2/s) a | KAssb (M−1) | ΔG0 (kJ/mol) c |
---|---|---|---|
1o@β-CD | 3.0∙10−10 | 6.1∙103 ± 0.4∙103 | −21.6 ± 0.4 |
1c@β-CD | 3.0∙10−10 | 1.8∙103 ± 0.2∙103 | −18.6 ± 0.3 |
2o@β-CD | 3.4∙10−10 | 7.4∙102 ± 0.5∙102 | −16.4 ± 0.2 |
2c@β-CD | 3.4∙10−10 | 5.3∙102 ± 0.5∙102 | −15.5 ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, G.; Bazan, M.; Fabris, F.; Scarso, A. β-Cyclodextrin Supramolecular Recognition of bis-Cationic Dithienylethenes. Organics 2022, 3, 77-86. https://doi.org/10.3390/org3020005
Bianchini G, Bazan M, Fabris F, Scarso A. β-Cyclodextrin Supramolecular Recognition of bis-Cationic Dithienylethenes. Organics. 2022; 3(2):77-86. https://doi.org/10.3390/org3020005
Chicago/Turabian StyleBianchini, Giulio, Mattia Bazan, Fabrizio Fabris, and Alessandro Scarso. 2022. "β-Cyclodextrin Supramolecular Recognition of bis-Cationic Dithienylethenes" Organics 3, no. 2: 77-86. https://doi.org/10.3390/org3020005
APA StyleBianchini, G., Bazan, M., Fabris, F., & Scarso, A. (2022). β-Cyclodextrin Supramolecular Recognition of bis-Cationic Dithienylethenes. Organics, 3(2), 77-86. https://doi.org/10.3390/org3020005