Antenna Selection Based on Matching Theory for Uplink Cell-Free Millimetre Wave Massive Multiple Input Multiple Output Systems
Abstract
:1. Introduction
- For all APs in the cell-free network, we propose an assignment optimization problem to accomplish matching between RF chains and several sets of selected antennas based on channel conditions. Then, we propose the Hungarian method to solve this optimization problem based on maximum weight matching in order to maximize energy efficiency. In contrast to [22], instead of assuming that all RF chains in the AP have the same fixed active switches, we exploit the advantages of the matching theory based on the Hungarian algorithm to assign each RF chain at each AP in the cell-free network to the optimal number of activated switches depending on AP channel condition in order to maximize energy efficiency.
- Simulation results demonstrate the performance of the proposed antenna selection strategies under an extensive set of cell-free mm-wave massive MIMO scenarios. In particular, the number of APs, the number of antennas, and the number of users in the network are analysed in terms of energy efficiency. In addition, computational complexity of the proposed algorithms is studied in this work.
2. System Model
2.1. Channel Model
2.2. Analog Combining Design
2.3. Uplink Channel Estimation
2.4. Uplink Data Transmission
3. Problem Formulation and Proposed Solution
3.1. Problem Formulation
3.2. Problem Solution
Algorithm 1: Matching strategy for RF chain-subset selected antennas based on the Hungarian algorithm. |
4. Power Consumption and Energy Efficiency Models
5. Simulation Results and Discussions
6. Complexity Analysis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WRC-19 Identifies Additional Frequency Bands for 5G—ITU Hub. Available online: https://www.itu.int/hub/2020/01/wrc-19-identifies-additional-frequency-bands-for-5g/ (accessed on 10 May 2022).
- Nguyen, N.T.; Lee, K. Coverage and Cell-Edge Sum-Rate Analysis of mmWave Massive MIMO Systems with ORP Schemes and MMSE Receivers. IEEE Trans. Signal Process. 2018, 66, 5349–5363. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Sayeed, A.M. Low RF-Complexity Technologies to Enable Millimeter-Wave MIMO with Large Antenna Array for 5G Wireless Communications. IEEE Commun. Mag. 2018, 56, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Elhoushy, S.; Ibrahim, M.; Hamouda, W. Cell-Free Massive MIMO: A Survey. IEEE Commun. Surv. Tutor. 2022, 24, 492–523. [Google Scholar] [CrossRef]
- Ngo, H.Q.; Tran, L.N.; Duong, T.Q.; Matthaiou, M.; Larsson, E.G. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Trans. Green Commun. Netw. 2018, 2, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Ngo, H.Q.; Ashikhmin, A.; Yang, H.; Larsson, E.G.; Marzetta, T.L. Cell-Free Massive MIMO Versus Small Cells. IEEE Trans. Wirel. Commun. 2017, 16, 1834–1850. [Google Scholar] [CrossRef] [Green Version]
- Björnson, E.; Sanguinetti, L. Making Cell-Free Massive MIMO Competitive With MMSE Processing and Centralized Implementation. IEEE Trans. Wirel. Commun. 2020, 19, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Abbas, W.B.; Gomez-Cuba, F.; Zorzi, M. Millimeter Wave Receiver Efficiency: A Comprehensive Comparison of Beamforming Schemes With Low Resolution ADCs. IEEE Trans. Wirel. Commun. 2017, 16, 8131–8146. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.W.; González-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Gao, X.; Dai, L.; Han, S.; C, I.; Heath, R.W. Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays. IEEE J. Sel. Areas Commun. 2016, 34, 998–1009. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A.; Leus, G.; Heath, R.W. Limited Feedback Hybrid Precoding for Multi-User Millimeter Wave Systems. IEEE Trans. Wirel. Commun. 2015, 14, 6481–6494. [Google Scholar] [CrossRef] [Green Version]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; C, I.; Xu, Z.; Rowell, C. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun. Mag. 2015, 53, 186–194. [Google Scholar] [CrossRef]
- Alkhateeb, A.; Nam, Y.; Zhang, J.; Heath, R.W. Massive MIMO Combining with Switches. IEEE Wirel. Commun. Lett. 2016, 5, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Sah, A.K.; Chaturvedi, A.K. Quasi-Orthogonal Combining for Reducing RF Chains in Massive MIMO Systems. IEEE Wirel. Commun. Lett. 2017, 6, 126–129. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Duong, T.Q.; Ngo, H.Q.; Tourki, K. Energy Efficiency in Cell-Free Massive MIMO with Zero-Forcing Precoding Design. IEEE Commun. Lett. 2017, 21, 1871–1874. [Google Scholar] [CrossRef] [Green Version]
- Femenias, G.; Riera-Palou, F. Cell-Free Millimeter-Wave Massive MIMO Systems with Limited Fronthaul Capacity. IEEE Access 2019, 7, 44596–44612. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Lee, K.; Dai, H. Hybrid Beamforming and Adaptive RF Chain Activation for Uplink Cell-Free Millimeter-Wave Massive MIMO Systems. IEEE Trans. Veh. Technol. 2022, 1. [Google Scholar] [CrossRef]
- Ayidh, A.A.; Sambo, Y.; Ansari, S.; Imran, M.A. Hybrid Beamforming with Fixed Phase Shifters for Uplink Cell-Free Millimetre-Wave Massive MIMO Systems. In Proceedings of the 2021 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Porto, Portugal, 8–11 June 2021; pp. 19–24. [Google Scholar]
- Méndez-Rial, R.; Rusu, C.; González-Prelcic, N.; Alkhateeb, A.; Heath, R.W. Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches? IEEE Access 2016, 4, 247–267. [Google Scholar] [CrossRef]
- Boroujerdi, M.N.; Abbasfar, A.; Ghanbari, M. Antenna assignment in Cell Free Massive MIMO systems. In Proceedings of the 2017 Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran, 2–4 May 2017; pp. 1747–1751. [Google Scholar]
- Bahingayi, E.E.; Lee, K. Hybrid Combining Based on Constant Phase Shifters and Active/Inactive Switches. IEEE Trans. Veh. Technol. 2020, 69, 4058–4068. [Google Scholar] [CrossRef] [Green Version]
- Munkres, J. Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 1957, 5, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A.; Ayach, O.E.; Leus, G.; Heath, R.W. Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems. IEEE J. Sel. Top. Signal Process. 2014, 8, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Andrea, C.D.; Interdonato, G.; Buzzi, S. User-centric Handover in mmWave Cell-Free Massive MIMO with User Mobility. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August 2021; pp. 1–5. [Google Scholar]
- Rappaport, T.S.; MacCartney, G.R.; Samimi, M.K.; Sun, S. Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design. IEEE Trans. Commun. 2015, 63, 3029–3056. [Google Scholar] [CrossRef]
- Rappaport, T.S.; Ben-Dor, E.; Murdock, J.N.; Qiao, Y. 38 GHz and 60 GHz angle-dependent propagation for cellular & peer-to-peer wireless communications. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 4568–4573. [Google Scholar]
- Marzetta, T.L. Fundamentals of Massive MIMO; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Elijah, O.; Leow, C.Y.; Rahman, T.A.; Nunoo, S.; Iliya, S.Z. A Comprehensive Survey of Pilot Contamination in Massive MIMO—5G System. IEEE Commun. Surv. Tutor. 2016, 18, 905–923. [Google Scholar] [CrossRef]
- Björnson, E.; Hoydis, J.; Sanguinetti, L. Massive MIMO Networks: Spectral, Energy, and Hardware Efficiency. Found. Trends Signal Process. 2017, 11, 154–655. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Tian, X.; Wang, Z.; Liu, Q. Iterative hybrid precoder and combiner design for mmWave MIMO-OFDM systems. Wirel. Netw. 2019, 25, 4829–4837. [Google Scholar] [CrossRef] [Green Version]
- Sohrabi, F.; Yu, W. Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays. IEEE J. Sel. Top. Signal Process. 2016, 10, 501–513. [Google Scholar] [CrossRef] [Green Version]
- Nayebi, E.; Ashikhmin, A.; Marzetta, T.L.; Yang, H.; Rao, B.D. Precoding and Power Optimization in Cell-Free Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2017, 16, 4445–4459. [Google Scholar] [CrossRef]
- Femenias, G.; Lassoued, N.; Riera-Palou, F. Access Point Switch ON/OFF Strategies for Green Cell-Free Massive MIMO Networking. IEEE Access 2020, 8, 21788–21803. [Google Scholar] [CrossRef]
- Aguerri, I.E.; Zaidi, A.; Caire, G.; Shitz, S.S. On the Capacity of Cloud Radio Access Networks with Oblivious Relaying. IEEE Trans. Inf. Theory 2019, 65, 4575–4596. [Google Scholar] [CrossRef] [Green Version]
- Bashar, M.; Cumanan, K.; Burr, A.G.; Ngo, H.Q.; Larsson, E.G.; Xiao, P. Energy Efficiency of the Cell-Free Massive MIMO Uplink With Optimal Uniform Quantization. IEEE Trans. Green Commun. Netw. 2019, 3, 971–987. [Google Scholar] [CrossRef] [Green Version]
- García-Morales, J.; Femenias, G.; Riera-Palou, F. Energy-Efficient Access-Point Sleep-Mode Techniques for Cell-Free mmWave Massive MIMO Networks With Non-Uniform Spatial Traffic Density. IEEE Access 2020, 8, 137587–137605. [Google Scholar] [CrossRef]
- Yu, Y.; Baltus, P.G.M.; Graauw, A.D.; Heijden, E.V.D.; Vaucher, C.S.; Roermund, A.H.M.V. A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems. IEEE J. Solid State Circuits 2010, 45, 1697–1709. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Björnson, E. Channel Hardening and Favorable Propagation in Cell-Free Massive MIMO With Stochastic Geometry. IEEE Trans. Commun. 2018, 66, 5205–5219. [Google Scholar] [CrossRef] [Green Version]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Jungnickel, D.; Jungnickel, D. Graphs, Networks and Algorithms; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3. [Google Scholar]
Parameter | Value |
---|---|
Carrier frequency (f) | 28 GHz [25] |
Bandwidth (B) | 500 MHz [25] |
Antenna gain () | 15 dBi [18,26] |
Noise figure () | 9 dB [6,18] |
Coherence interval length () | 200 samples |
Length of pilot sequence () | 20 samples |
Pilot transmit power () | 100 mW |
Quantization bits () | 2 bits [36] |
Fronthaul capacity () | 100 Mbps [39] |
Amplifier efficiency () | 0.3 [5] |
Coherence time () | 2 ms [36] |
Power components: | W, W, W, mW, mW, mW, mW, mW, mW, and mW. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Ayidh, A.; Sambo, Y.; Olaosebikan, S.; Ansari, S.; Imran, M.A. Antenna Selection Based on Matching Theory for Uplink Cell-Free Millimetre Wave Massive Multiple Input Multiple Output Systems. Telecom 2022, 3, 448-466. https://doi.org/10.3390/telecom3030024
Al Ayidh A, Sambo Y, Olaosebikan S, Ansari S, Imran MA. Antenna Selection Based on Matching Theory for Uplink Cell-Free Millimetre Wave Massive Multiple Input Multiple Output Systems. Telecom. 2022; 3(3):448-466. https://doi.org/10.3390/telecom3030024
Chicago/Turabian StyleAl Ayidh, Abdulrahman, Yusuf Sambo, Sofiat Olaosebikan, Shuja Ansari, and Muhammad Ali Imran. 2022. "Antenna Selection Based on Matching Theory for Uplink Cell-Free Millimetre Wave Massive Multiple Input Multiple Output Systems" Telecom 3, no. 3: 448-466. https://doi.org/10.3390/telecom3030024