Prediction of RF-EMF Exposure by Outdoor Drive Test Measurements
Abstract
:1. Introduction
2. Measurement Description
2.1. Measurement Equipment
2.2. Drive Test Protocol and Analysis
3. Spatial Reconstruction on EMF Exposure
3.1. ANN Model
4. Results
4.1. Analysis of Drive Test Data
4.2. ANN-Based Prediction of RF-EMF Exposure
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gajšek, P.; Ravazzani, P.; Wiart, J.; Grellier, J.; Samaras, T.; Thuróczy, G. Electromagnetic field exposure assessment in Europe radiofrequency fields (10 MHz–6 GHz). J. Expo. Sci. Environ. Epidemiol. 2015, 25, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Tesanovic, M.; Conil, E.; De Domenico, A.; Aguero, R.; Freudenstein, F.; Correia, L.M.; Bories, S.; Martens, L.; Wiedemann, P.M.; Wiart, J. The LEXNET project: Wireless networks and EMF: Paving the way for low-EMF networks of the future. IEEE Veh. Technol. Mag. 2014, 9, 20–28. [Google Scholar]
- Diez, L.; Agüero, R.; Muñoz, L. Electromagnetic field assessment as a smart city service: The smartsantander use-case. Sensors 2017, 17, 1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazloum, T.; Aerts, S.; Joseph, W.; Wiart, J. RF-EMF exposure induced by mobile phones operating in LTE small cells in two different urban cities. Ann. Telecommun. 2019, 74, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Etude de L’Exposition du Public aux Ondes Radioélectriques. Analyse des Résultats de Mesures D’Exposition du Public aux Ondes Radiofréquences Réalisées en 2020 dans le Cadre du Dispositif National de Surveillance. Available online: https://www.anfr.fr/fileadmin/mediatheque/documents/expace/20210716-Analyse-mesures-2020.pdf (accessed on 23 June 2022).
- Onishi, T.; Ikuyo, M.; Tobita, K.; Liu, S.; Taki, M.; Watanabe, S. Radiofrequency exposure levels from mobile phone base stations in outdoor environments and an underground shopping mall in Japan. Int. J. Environ. Res. Public Health 2021, 18, 8068. [Google Scholar] [CrossRef]
- Velghe, M.; Aerts, S.; Martens, L.; Joseph, W.; Thielens, A. Protocol for personal RF-EMF exposure measurement studies in 5th generation telecommunication networks. Environ. Health 2021, 20, 36. [Google Scholar] [CrossRef]
- Colombi, D.; Joshi, P.; Xu, B.; Ghasemifard, F.; Narasaraju, V.; Törnevik, C. Analysis of the actual power and EMF exposure from base stations in a commercial 5G network. Appl. Sci. 2020, 10, 5280. [Google Scholar] [CrossRef]
- Celaya-Echarri, M.; Azpilicueta, L.; Karpowicz, J.; Ramos, V.; Lopez-Iturri, P.; Falcone, F. From 2G to 5G Spatial Modeling of Personal RF-EMF Exposure Within Urban Public Trams. IEEE Access 2020, 8, 100930–100947. [Google Scholar] [CrossRef]
- Huang, Y.; Wiart, J. Simplified assessment method for population RF exposure induced by a 4G network. IEEE J. Electromagn. RF Microwaves Med. Biol. 2017, 1, 34–40. [Google Scholar] [CrossRef]
- Azzi, S.; Huang, Y.; Sudret, B.; Wiart, J. Surrogate modeling of stochastic functions- application to computational electromagnetic dosimetry. Int. J. Uncertain. Quantif. 2019, 9, 351–363. [Google Scholar] [CrossRef]
- Al Hajj, M.; Wang, S.; Thanh Tu, L.; Azzi, S.; Wiart, J. A statistical estimation of 5G massive MIMO networks’ exposure using stochastic geometry in mmWave bands. Appl. Sci. 2020, 10, 8753. [Google Scholar] [CrossRef]
- Jo, H.S.; Park, C.; Lee, E.; Choi, H.K.; Park, J. Path loss prediction based on machine learning techniques: Principal component analysis, artificial neural network, and Gaussian process. Sensors 2020, 20, 1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrane, J.; Zibar, D.; Christiansen, H.L. Model-aided deep learning method for path loss prediction in mobile communication systems at 2.6 GHz. IEEE Access 2020, 8, 7925–7936. [Google Scholar] [CrossRef]
- Huang, C.; He, R.; Ai, B.; Molisch, A.F.; Lau, B.K.; Haneda, K.; Liu, B.; Wang, C.X.; Yang, M.; Oestges, C.; et al. Artificial intelligence enabled radio propagation for communications—Part I: Channel characterization and antenna-channel optimization. IEEE Trans. Antennas Propag. 2022, 70, 3939–3954. [Google Scholar] [CrossRef]
- Huang, C.; He, R.; Ai, B.; Molisch, A.F.; Lau, B.K.; Haneda, K.; Liu, B.; Wang, C.X.; Yang, M.; Oestges, C.; et al. Artificial intelligence enabled radio propagation for communications—Part II: Scenario identification and channel modeling. IEEE Trans. Antennas Propag. 2022, 70, 3955–3969. [Google Scholar] [CrossRef]
- Mazloum, T.; Wang, S.; Hamdi, M.; Mulugeta, B.A.; Wiart, J. Artificial Neural Network-Based Uplink Power Prediction From Multi-Floor Indoor Measurement Campaigns in 4G Networks. Front. Public Health 2021, 9, 777798. [Google Scholar] [CrossRef]
- Falkenberg, R.; Sliwa, B.; Piatkowski, N.; Wietfeld, C. Machine Learning Based Uplink Transmission Power Prediction for LTE and Upcoming 5G Networks Using Passive Downlink Indicators. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tognola, G.; Plets, D.; Chiaramello, E.; Gallucci, S.; Bonato, M.; Fiocchi, S.; Parazzini, M.; Martens, L.; Joseph, W.; Ravazzani, P. Use of Machine Learning for the Estimation of Down-and Up-Link Field Exposure in Multi-Source Indoor WiFi Scenarios. Bioelectromagnetics 2021, 42, 550–561. [Google Scholar] [CrossRef]
- Mallik, M.; Kharbech, S.; Mazloum, T.; Wang, S.; Wiart, J.; Gaillot, D.P.; Clavier, L. EME-Net: A U-net-based Indoor EMF Exposure Map Reconstruction Method. In Proceedings of the 2022 16th European Conference on Antennas and Propagation (EuCAP), Madrid, Spain, 27 March–1 April 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, S.; Wiart, J. Sensor-Aided EMF Exposure Assessments in an Urban Environment Using Artificial Neural Networks. Int. J. Environ. Res. Public Health 2020, 17, 3052. [Google Scholar] [CrossRef]
- Tektronix. Available online: https://download.tek.com/datasheet/RSA306-USB-Spectrum-Anayzer-Datasheet-37W307676.pdf (accessed on 23 June 2022).
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to electromagnetic fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Wiart, J. Radio-Frequency Human Exposure Assessment: From Deterministic to Stochastic Methods; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- ANFR-Cartoradio. Available online: https://www.cartoradio.fr/index.html#/ (accessed on 23 June 2022).
- Mahfouz, Z.; Gati, A.; Lautru, D.; Wong, M.F.; Wiart, J.; Hanna, V.F. Influence of traffic variations on exposure to wireless signals in realistic environments. Bioelectromagnetisn 2011, 33, 288–297. [Google Scholar] [CrossRef]
- Joseph, W.; Verloock, L. Influence of mobile phone traffic on base station exposure of the general public. Health Phys. 2010, 99, 631–638. [Google Scholar] [CrossRef] [PubMed]
1st BS | 2nd BS | 3rd BS | 4th BS | 5th BS | 6th BS | 7th BS | |
---|---|---|---|---|---|---|---|
Mean Distance (m) | 80.693 | 127.296 | 163.649 | 192.726 | 219.452 | 242.019 | 262.701 |
Hyper-Parameters | Model (a) | Model (b) |
---|---|---|
Number of layers | 5 | 3 (LC) + 3 (FC) |
Number of neurons (Hidden layers) | 40 | (LC) + 50 (FC) |
Optimizer | Adamax | |
Activation function | Relu | |
Learning rate | 0.01 | 0.005 |
Learning Rate decay | ||
Number of epoch | 100 | |
Train:Validation:Test | 0.49:0.21:0.3 | |
Loss function | mean squared error |
N | Model (a) | Model (b) | ||
---|---|---|---|---|
MSE | MSE | |||
3 | 0.66522 | 0.00148 | 0.805 | 0.000805 |
5 | 0.74810 | 0.00111 | 0.806985 | 0.00079 |
7 | 0.75016 | 0.0011 | 0.813376 | 0.000764 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Mazloum, T.; Wiart, J. Prediction of RF-EMF Exposure by Outdoor Drive Test Measurements. Telecom 2022, 3, 396-406. https://doi.org/10.3390/telecom3030021
Wang S, Mazloum T, Wiart J. Prediction of RF-EMF Exposure by Outdoor Drive Test Measurements. Telecom. 2022; 3(3):396-406. https://doi.org/10.3390/telecom3030021
Chicago/Turabian StyleWang, Shanshan, Taghrid Mazloum, and Joe Wiart. 2022. "Prediction of RF-EMF Exposure by Outdoor Drive Test Measurements" Telecom 3, no. 3: 396-406. https://doi.org/10.3390/telecom3030021
APA StyleWang, S., Mazloum, T., & Wiart, J. (2022). Prediction of RF-EMF Exposure by Outdoor Drive Test Measurements. Telecom, 3(3), 396-406. https://doi.org/10.3390/telecom3030021