Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls
Abstract
1. Introduction
2. The Probabilistic Retry Loss Model
3. The Proposed Probabilistic Threshold Loss Model
4. Performance Evaluation
5. Conclusions
Funding
Conflicts of Interest
Appendix A
P(0,1,1) + 4/3 P(0,0,2) + P(1,0,1) − (1.4 + 2/3) P(0,0,1) = 0
P(1,0,2) + 0.4 P(0,0,1) − 7/3 P(0,0,2) = 0
P(0,0,0) + P(1,1,0) +2/3 P(0,1,1) − 2.4 P(0,1,0) = 0
0.4P(0,1,0) − 5/3 P(0,1,1) = 0
2/3 P(1,0,1) + P(0,0,0) + 2P(2,0,0) + P(1,1,0) − 3 P(1,0,0) = 0
4/3 P(1,0,2) + P(0,0,1) + 2P(2,0,1) − (8/3 + 0.4) P(1,0,1) = 0
0.4P(1,0,1) + P(0,0,2) − 7/3 P(1,0,2) = 0
P(1,0,0) + P(0,1,0) + 2P(2,1,0) − 3P(1,1,0) = 0
P(2,1,0) + P(1,0,0) + 3P(3,0,0) + 2/3P(2,0,1) − 3.4P(2,0,0) = 0
0.4P(2,0,0) + P(1,0,1) + 3P(3,0,1) − 11/3 P(2,0,1) = 0
P(1,1,0) − 3P(2,1,0) = 0
2/3 P(3,0,1) + P(2,0,0) + 4P(4,0,0) − 4.4P(3,0,0) = 0
P(2,0,1) + 0.4P(3,0,0) − 11/3 P(3,0,1) = 0
5P(5,0,0) + P(3,0,0) − 5P(4,0,0) = 0
P(4,0,0) − 5P(5,0,0) = 0
References
- Stasiak, M.; Głąbowski, M.; Wisniewski, A.; Zwierzykowski, P. Modeling and Dimensioning of Mobile Networks: From GSM to LTE; John Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moscholios, I.D.; Logothetis, M.D. Efficient Multirate Teletraffic Loss Models Beyond Erlang; John Wiley & IEEE Press: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kaufman, J. Blocking in a shared resource environment. IEEE Trans. Commun. 1981, 29, 1474–1481. [Google Scholar] [CrossRef]
- Roberts, J. A service system with heterogeneous user requirements. Performance of Data Communications Systems and Their Applications; Springer: Amsterdam, The Netherlands, 1981; pp. 423–431. [Google Scholar]
- Berezner, S.; Krzesinski, A. An efficient stable recursion to compute multiservice blocking probabilities. Perf. Eval. 2001, 43, 151–164. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Kokkinakis, G. Connection dependent threshold model: A generalization of the Erlang multiple rate loss model. Perf. Eval. 2002, 48, 177–200. [Google Scholar] [CrossRef]
- Głąbowski, M.; Stasiak, M. Point-to-point blocking probability in switching networks with reservation. Ann. Telecommun. 2002, 57, 798–831. [Google Scholar]
- Moscholios, I.; Logothetis, M.; Nikolaropoulos, P. Engset multi-rate state-dependent loss models. Perf. Eval. 2005, 59, 247–277. [Google Scholar] [CrossRef]
- Iversen, V.; Stepanov, S. Derivatives of blocking probabilities for multi-service loss Systems and their applications. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2007; p. 4712. [Google Scholar]
- Huang, Q.; Ko, K.; Iversen, V. Approximation of loss calculation for hierarchical networks with multiservice overflows. IEEE Trans. Commun. 2008, 56, 466–473. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modeling product-form state dependent systems with BPP traffic. Perf. Eval. 2010, 67, 174–197. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M. The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy. Comp. Commun. 2010, 33, S167–S179. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Vardakas, J.; Logothetis, M. Retry loss models supporting elastic traffic. Adv. Electr. Telecommun. 2011, 2, 8–13. [Google Scholar]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modelling overflow systems with distributed secondary resources. Comput. Netw. 2016, 108, 171–183. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Shioda, S. Performance evaluation of multirate loss systems supporting cooperative users with a probabilistic behavior. IEICE Trans. Commun. 2017, E100-B, 1778–1788. [Google Scholar] [CrossRef]
- Sagkriotis, S.; Pantelis, S.; Moscholios, I.; Vassilakis, V. Call blocking probabilities in a two-link multi rate loss system for Poisson traffic. IET Netw. 2018, 7, 233–241. [Google Scholar] [CrossRef]
- Kuppuswamy, K.; Lee, D. An analytical approach to efficiently computing call blocking probabilities for multiclass WDM networks. IEEE ACM Trans. Netw. 2009, 17, 658–670. [Google Scholar] [CrossRef]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. Performance analysis of OCDMA PONs supporting multi-rate bursty traffic. IEEE Trans. Commun. 2013, 61, 3374–3384. [Google Scholar] [CrossRef]
- Beyranvand, H.; Maier, M.; Salehi, J. An analytical framework for the performance evaluation of node-and network-wise operation scenarios in elastic optical networks. IEEE Trans. Commun. 2014, 62, 1621–1633. [Google Scholar] [CrossRef]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. Performance analysis of OCDMA PON configuration supporting multirate bursty traffic with retrials and QoS differentiation. Opt. Switch. Netw. 2014, 13, 112–123. [Google Scholar] [CrossRef]
- Cruz-Pérez, F.; Vázquez-Ávila, J.; Ortigoza-Guerrero, L. Recurrent formulas for the multiple fractional channel reservation strategy in multiservice mobile cellular networks. IEEE Commun. Lett. 2004, 8, 629–631. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W. Call blocking probability and bandwidth utilization of OFDM subcarrier allocation in next-generation wireless networks. IEEE Comm. Lett. 2006, 10, 82–84. [Google Scholar] [CrossRef]
- Vassilakis, V.; Kallos, G.; Moscholios, I.; Logothetis, M. The wireless Engset multi-rate loss model for the call-level analysis of W-CDMA networks. In Proceedings of the 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 3–7 September 2007. [Google Scholar]
- Pla, J.; Martinez-Bauset, J.; Casares-Giner, V. Comments on “call blocking probability and bandwidth utilization of OFDM subcarrier allocation in next-generation wireless networks”. IEEE Comm. Lett. 2008, 12, 349. [Google Scholar] [CrossRef]
- Widjaja, I.; La Roche, H. Sizing X2 bandwidth for inter-connected eNBs. In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 20–23 September 2009. [Google Scholar]
- Blaszczyszyn, B.; Karray, M. Dimensioning of the downlink in OFDMA cellular networks via an Erlang’s loss model. In Proceedings of the European Wireless Conference, Aalborg, Denmark, 17–20 May 2009. [Google Scholar]
- Karray, M. Analytical evaluation of QoS in the downlink of OFDMA wireless cellular networks serving streaming and elastic traffic. IEEE Trans. Wirel. Commun. 2010, 9, 1799–1807. [Google Scholar] [CrossRef]
- Paik, C.; Suh, Y. Generalized queueing model for call blocking probability and resource utilization in OFDM wireless networks. IEEE Commun. Lett. 2011, 15, 767–769. [Google Scholar] [CrossRef]
- Parniewicz, D.; Stasiak, M.; Zwierzykowski, P. Traffic engineering for multicast connections in multiservice cellular networks. IEEE Trans. Ind. Inform. 2013, 9, 262–270. [Google Scholar] [CrossRef]
- Avramova, A.; Iversen, V. Radio access sharing strategies for multiple operators in cellular networks. In Proceedings of the IEEE ICC Workshop on 5G & Beyond, London, UK, 8–12 June 2015. [Google Scholar]
- Hanczewski, S.; Stasiak, M.; Zwierzykowski, P. Modelling of the access part of a multi-service mobile network with service priorities. EURASIP J. Wirel. Commun. Netw. 2015, 194. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks. IEEE Wirel. Commun. Lett. 2016, 5, 304–307. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. State-dependent bandwidth sharing policies for wireless multirate loss networks. IEEE Trans. Wirel. Commun. 2017, 16, 5481–5497. [Google Scholar] [CrossRef]
- Panagoulias, P.; Moscholios, I. Congestion probabilities in the X2 link of LTE networks. Telecommun. Syst. 2019, 71, 585–599. [Google Scholar] [CrossRef]
- Wang, Z.; Mathiopoulos, P.; Schober, R. Performance analysis and improvement methods for channel resource management strategies of LEO-MSS with multiparty traffic. IEEE Trans. Veh. Technol. 2008, 57, 3832–3842. [Google Scholar] [CrossRef]
- Wang, Z.; Mathiopoulos, P.; Schober, R. Channeling partitioning policies for multi-class traffic in LEO-MSS. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1320–1334. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Sarigiannidis, P.; Sagias, N.; Logothetis, M. An analytical framework in LEO mobile satellite systems servicing batched Poisson traffic. IET Commun. 2018, 12, 18–25. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Sagias, N.; Logothetis, M. On channel sharing policies in LEO mobile satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1628–1640. [Google Scholar] [CrossRef]
- Kaufman, J. Blocking in a completely shared resource environment with state dependent resource and residency requirements. In Proceedings of the IEEE INFOCOM, Florence, Italy, 4–8 May 1992; pp. 2224–2232. [Google Scholar]
- Kaufman, J. Blocking with retrials in a completely shared resource environment. Perf. Eval. 1992, 15, 99–113. [Google Scholar] [CrossRef]
- Artalejo, J.; Gomez-Corral, A. Retrial Queueing Systems: A Computational Approach; Springer: Berlin, Germany, 2008. [Google Scholar]
- Wang, K.; Li, N.; Jiang, Z. Queueing system with impatient customers: A review. In Proceedings of the IEEE International Conference Service Operations and Logistics and Informatics, Qingdao, China, 15–17 July 2010. [Google Scholar]
- Wu, M.; Tan, L. An infinite-source M/M/S retrial queuing network model with balking and impatient customers. In Proceedings of the IEEE Global High Tech Congress on Electronics, Shenzhen, China, 17–19 November 2013. [Google Scholar]
- Danilyuk, E.; Moiseeva, S.; Nazarov, A. Asymptotic analysis of retrial queueing system M/GI/1 with collisions and impatient calls. In International Conference on Information Technologies and Mathematical Modelling; Springer: Cham, Switzerland, 2019; Volume 1109, pp. 230–242. [Google Scholar]
- Moscholios, I.; Logothetis, M. A single retry multirate loss model for impatient calls. In Proceedings of the IEEE/IET CSNDSP, Porto, Portugal, 20–22 July 2020. [Google Scholar]
- Simscript III. Available online: http://www.simscript.com (accessed on 26 January 2021).
- Fodor, G.; Rácz, S.; Telek, M. On providing blocking probability and throughput guarantees in a multi-service environment. Int. J. Commun. Syst. 2002, 15, 257–285. [Google Scholar] [CrossRef]
- Vassilakis, V.; Kallos, G.; Moscholios, I.; Logothetis, M. Call-level analysis of W-CDMA networks supporting elastic services of finite population. In Proceedings of the IEEE International Conference Communications (ICC), Beijing, China, 19–23 May 2008. [Google Scholar]
- Moscholios, I.; Vardakas, J.; Logothetis, M.; Boucouvalas, A. A batched Poisson multirate loss model supporting elastic traffic under the bandwidth reservation policy. In Proceedings of the IEEE International Conference Communications (ICC), Kyoto, Japan, 5–9 June 2011. [Google Scholar]
- Głąbowski, M.; Hanczewski, S.; Stasiak, M. Modelling load balancing mechanisms in self-optimising 4G mobile networks with elastic and adaptive traffic. IEICE Trans. Commun. 2016, E99-B, 1718–1726. [Google Scholar]
- Głąbowski, M.; Kmiecik, D.; Stasiak, M. Modelling of multiservice networks with separated resources and overflow of adaptive traffic. Wirel. Commun. Mob. Comput. 2018, 7870164. [Google Scholar] [CrossRef]
- Vassilakis, V.; Moscholios, I.; Logothetis, M. Quality of service differentiation of elastic and adaptive services in CDMA networks: A mathematical modelling approach. Wirel. Netw. 2018, 24, 1279–1295. [Google Scholar] [CrossRef]
- Nowak, B.; Piechowiak, M.; Stasiak, M.; Zwierzykowski, P. An analytical model of a system with priorities servicing a mixture of different elastic traffic streams. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 263–270. [Google Scholar]
- Hanczewski, S.; Stasiak, M.; Weissenberg, J. A model of a system with stream and elastic traffic. Accept. Publ. IEEE Access 2021, 9, 7789–7796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscholios, I.D. Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls. Telecom 2021, 2, 28-41. https://doi.org/10.3390/telecom2010003
Moscholios ID. Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls. Telecom. 2021; 2(1):28-41. https://doi.org/10.3390/telecom2010003
Chicago/Turabian StyleMoscholios, Ioannis D. 2021. "Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls" Telecom 2, no. 1: 28-41. https://doi.org/10.3390/telecom2010003
APA StyleMoscholios, I. D. (2021). Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls. Telecom, 2(1), 28-41. https://doi.org/10.3390/telecom2010003