Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls
Abstract
:1. Introduction
2. The Probabilistic Retry Loss Model
3. The Proposed Probabilistic Threshold Loss Model
4. Performance Evaluation
5. Conclusions
Funding
Conflicts of Interest
Appendix A
P(0,1,1) + 4/3 P(0,0,2) + P(1,0,1) − (1.4 + 2/3) P(0,0,1) = 0
P(1,0,2) + 0.4 P(0,0,1) − 7/3 P(0,0,2) = 0
P(0,0,0) + P(1,1,0) +2/3 P(0,1,1) − 2.4 P(0,1,0) = 0
0.4P(0,1,0) − 5/3 P(0,1,1) = 0
2/3 P(1,0,1) + P(0,0,0) + 2P(2,0,0) + P(1,1,0) − 3 P(1,0,0) = 0
4/3 P(1,0,2) + P(0,0,1) + 2P(2,0,1) − (8/3 + 0.4) P(1,0,1) = 0
0.4P(1,0,1) + P(0,0,2) − 7/3 P(1,0,2) = 0
P(1,0,0) + P(0,1,0) + 2P(2,1,0) − 3P(1,1,0) = 0
P(2,1,0) + P(1,0,0) + 3P(3,0,0) + 2/3P(2,0,1) − 3.4P(2,0,0) = 0
0.4P(2,0,0) + P(1,0,1) + 3P(3,0,1) − 11/3 P(2,0,1) = 0
P(1,1,0) − 3P(2,1,0) = 0
2/3 P(3,0,1) + P(2,0,0) + 4P(4,0,0) − 4.4P(3,0,0) = 0
P(2,0,1) + 0.4P(3,0,0) − 11/3 P(3,0,1) = 0
5P(5,0,0) + P(3,0,0) − 5P(4,0,0) = 0
P(4,0,0) − 5P(5,0,0) = 0
References
- Stasiak, M.; Głąbowski, M.; Wisniewski, A.; Zwierzykowski, P. Modeling and Dimensioning of Mobile Networks: From GSM to LTE; John Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Moscholios, I.D.; Logothetis, M.D. Efficient Multirate Teletraffic Loss Models Beyond Erlang; John Wiley & IEEE Press: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kaufman, J. Blocking in a shared resource environment. IEEE Trans. Commun. 1981, 29, 1474–1481. [Google Scholar] [CrossRef]
- Roberts, J. A service system with heterogeneous user requirements. Performance of Data Communications Systems and Their Applications; Springer: Amsterdam, The Netherlands, 1981; pp. 423–431. [Google Scholar]
- Berezner, S.; Krzesinski, A. An efficient stable recursion to compute multiservice blocking probabilities. Perf. Eval. 2001, 43, 151–164. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Kokkinakis, G. Connection dependent threshold model: A generalization of the Erlang multiple rate loss model. Perf. Eval. 2002, 48, 177–200. [Google Scholar] [CrossRef]
- Głąbowski, M.; Stasiak, M. Point-to-point blocking probability in switching networks with reservation. Ann. Telecommun. 2002, 57, 798–831. [Google Scholar]
- Moscholios, I.; Logothetis, M.; Nikolaropoulos, P. Engset multi-rate state-dependent loss models. Perf. Eval. 2005, 59, 247–277. [Google Scholar] [CrossRef]
- Iversen, V.; Stepanov, S. Derivatives of blocking probabilities for multi-service loss Systems and their applications. In Lecture Notes in Computer Science; Springer: Berlin, Germany, 2007; p. 4712. [Google Scholar]
- Huang, Q.; Ko, K.; Iversen, V. Approximation of loss calculation for hierarchical networks with multiservice overflows. IEEE Trans. Commun. 2008, 56, 466–473. [Google Scholar] [CrossRef]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modeling product-form state dependent systems with BPP traffic. Perf. Eval. 2010, 67, 174–197. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M. The Erlang multirate loss model with batched Poisson arrival processes under the bandwidth reservation policy. Comp. Commun. 2010, 33, S167–S179. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Vardakas, J.; Logothetis, M. Retry loss models supporting elastic traffic. Adv. Electr. Telecommun. 2011, 2, 8–13. [Google Scholar]
- Głąbowski, M.; Kaliszan, A.; Stasiak, M. Modelling overflow systems with distributed secondary resources. Comput. Netw. 2016, 108, 171–183. [Google Scholar] [CrossRef]
- Moscholios, I.; Logothetis, M.; Shioda, S. Performance evaluation of multirate loss systems supporting cooperative users with a probabilistic behavior. IEICE Trans. Commun. 2017, E100-B, 1778–1788. [Google Scholar] [CrossRef]
- Sagkriotis, S.; Pantelis, S.; Moscholios, I.; Vassilakis, V. Call blocking probabilities in a two-link multi rate loss system for Poisson traffic. IET Netw. 2018, 7, 233–241. [Google Scholar] [CrossRef]
- Kuppuswamy, K.; Lee, D. An analytical approach to efficiently computing call blocking probabilities for multiclass WDM networks. IEEE ACM Trans. Netw. 2009, 17, 658–670. [Google Scholar] [CrossRef]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. Performance analysis of OCDMA PONs supporting multi-rate bursty traffic. IEEE Trans. Commun. 2013, 61, 3374–3384. [Google Scholar] [CrossRef]
- Beyranvand, H.; Maier, M.; Salehi, J. An analytical framework for the performance evaluation of node-and network-wise operation scenarios in elastic optical networks. IEEE Trans. Commun. 2014, 62, 1621–1633. [Google Scholar] [CrossRef]
- Vardakas, J.; Moscholios, I.; Logothetis, M.; Stylianakis, V. Performance analysis of OCDMA PON configuration supporting multirate bursty traffic with retrials and QoS differentiation. Opt. Switch. Netw. 2014, 13, 112–123. [Google Scholar] [CrossRef]
- Cruz-Pérez, F.; Vázquez-Ávila, J.; Ortigoza-Guerrero, L. Recurrent formulas for the multiple fractional channel reservation strategy in multiservice mobile cellular networks. IEEE Commun. Lett. 2004, 8, 629–631. [Google Scholar] [CrossRef]
- Chen, J.; Chen, W. Call blocking probability and bandwidth utilization of OFDM subcarrier allocation in next-generation wireless networks. IEEE Comm. Lett. 2006, 10, 82–84. [Google Scholar] [CrossRef]
- Vassilakis, V.; Kallos, G.; Moscholios, I.; Logothetis, M. The wireless Engset multi-rate loss model for the call-level analysis of W-CDMA networks. In Proceedings of the 18th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 3–7 September 2007. [Google Scholar]
- Pla, J.; Martinez-Bauset, J.; Casares-Giner, V. Comments on “call blocking probability and bandwidth utilization of OFDM subcarrier allocation in next-generation wireless networks”. IEEE Comm. Lett. 2008, 12, 349. [Google Scholar] [CrossRef]
- Widjaja, I.; La Roche, H. Sizing X2 bandwidth for inter-connected eNBs. In Proceedings of the 2009 IEEE 70th Vehicular Technology Conference Fall, Anchorage, AK, USA, 20–23 September 2009. [Google Scholar]
- Blaszczyszyn, B.; Karray, M. Dimensioning of the downlink in OFDMA cellular networks via an Erlang’s loss model. In Proceedings of the European Wireless Conference, Aalborg, Denmark, 17–20 May 2009. [Google Scholar]
- Karray, M. Analytical evaluation of QoS in the downlink of OFDMA wireless cellular networks serving streaming and elastic traffic. IEEE Trans. Wirel. Commun. 2010, 9, 1799–1807. [Google Scholar] [CrossRef]
- Paik, C.; Suh, Y. Generalized queueing model for call blocking probability and resource utilization in OFDM wireless networks. IEEE Commun. Lett. 2011, 15, 767–769. [Google Scholar] [CrossRef]
- Parniewicz, D.; Stasiak, M.; Zwierzykowski, P. Traffic engineering for multicast connections in multiservice cellular networks. IEEE Trans. Ind. Inform. 2013, 9, 262–270. [Google Scholar] [CrossRef]
- Avramova, A.; Iversen, V. Radio access sharing strategies for multiple operators in cellular networks. In Proceedings of the IEEE ICC Workshop on 5G & Beyond, London, UK, 8–12 June 2015. [Google Scholar]
- Hanczewski, S.; Stasiak, M.; Zwierzykowski, P. Modelling of the access part of a multi-service mobile network with service priorities. EURASIP J. Wirel. Commun. Netw. 2015, 194. [Google Scholar] [CrossRef] [Green Version]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. A probabilistic threshold-based bandwidth sharing policy for wireless multirate loss networks. IEEE Wirel. Commun. Lett. 2016, 5, 304–307. [Google Scholar] [CrossRef] [Green Version]
- Moscholios, I.; Vassilakis, V.; Logothetis, M.; Boucouvalas, A. State-dependent bandwidth sharing policies for wireless multirate loss networks. IEEE Trans. Wirel. Commun. 2017, 16, 5481–5497. [Google Scholar] [CrossRef] [Green Version]
- Panagoulias, P.; Moscholios, I. Congestion probabilities in the X2 link of LTE networks. Telecommun. Syst. 2019, 71, 585–599. [Google Scholar] [CrossRef]
- Wang, Z.; Mathiopoulos, P.; Schober, R. Performance analysis and improvement methods for channel resource management strategies of LEO-MSS with multiparty traffic. IEEE Trans. Veh. Technol. 2008, 57, 3832–3842. [Google Scholar] [CrossRef]
- Wang, Z.; Mathiopoulos, P.; Schober, R. Channeling partitioning policies for multi-class traffic in LEO-MSS. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 1320–1334. [Google Scholar] [CrossRef]
- Moscholios, I.; Vassilakis, V.; Sarigiannidis, P.; Sagias, N.; Logothetis, M. An analytical framework in LEO mobile satellite systems servicing batched Poisson traffic. IET Commun. 2018, 12, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Moscholios, I.; Vassilakis, V.; Sagias, N.; Logothetis, M. On channel sharing policies in LEO mobile satellite systems. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 1628–1640. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J. Blocking in a completely shared resource environment with state dependent resource and residency requirements. In Proceedings of the IEEE INFOCOM, Florence, Italy, 4–8 May 1992; pp. 2224–2232. [Google Scholar]
- Kaufman, J. Blocking with retrials in a completely shared resource environment. Perf. Eval. 1992, 15, 99–113. [Google Scholar] [CrossRef]
- Artalejo, J.; Gomez-Corral, A. Retrial Queueing Systems: A Computational Approach; Springer: Berlin, Germany, 2008. [Google Scholar]
- Wang, K.; Li, N.; Jiang, Z. Queueing system with impatient customers: A review. In Proceedings of the IEEE International Conference Service Operations and Logistics and Informatics, Qingdao, China, 15–17 July 2010. [Google Scholar]
- Wu, M.; Tan, L. An infinite-source M/M/S retrial queuing network model with balking and impatient customers. In Proceedings of the IEEE Global High Tech Congress on Electronics, Shenzhen, China, 17–19 November 2013. [Google Scholar]
- Danilyuk, E.; Moiseeva, S.; Nazarov, A. Asymptotic analysis of retrial queueing system M/GI/1 with collisions and impatient calls. In International Conference on Information Technologies and Mathematical Modelling; Springer: Cham, Switzerland, 2019; Volume 1109, pp. 230–242. [Google Scholar]
- Moscholios, I.; Logothetis, M. A single retry multirate loss model for impatient calls. In Proceedings of the IEEE/IET CSNDSP, Porto, Portugal, 20–22 July 2020. [Google Scholar]
- Simscript III. Available online: http://www.simscript.com (accessed on 26 January 2021).
- Fodor, G.; Rácz, S.; Telek, M. On providing blocking probability and throughput guarantees in a multi-service environment. Int. J. Commun. Syst. 2002, 15, 257–285. [Google Scholar] [CrossRef]
- Vassilakis, V.; Kallos, G.; Moscholios, I.; Logothetis, M. Call-level analysis of W-CDMA networks supporting elastic services of finite population. In Proceedings of the IEEE International Conference Communications (ICC), Beijing, China, 19–23 May 2008. [Google Scholar]
- Moscholios, I.; Vardakas, J.; Logothetis, M.; Boucouvalas, A. A batched Poisson multirate loss model supporting elastic traffic under the bandwidth reservation policy. In Proceedings of the IEEE International Conference Communications (ICC), Kyoto, Japan, 5–9 June 2011. [Google Scholar]
- Głąbowski, M.; Hanczewski, S.; Stasiak, M. Modelling load balancing mechanisms in self-optimising 4G mobile networks with elastic and adaptive traffic. IEICE Trans. Commun. 2016, E99-B, 1718–1726. [Google Scholar]
- Głąbowski, M.; Kmiecik, D.; Stasiak, M. Modelling of multiservice networks with separated resources and overflow of adaptive traffic. Wirel. Commun. Mob. Comput. 2018, 7870164. [Google Scholar] [CrossRef]
- Vassilakis, V.; Moscholios, I.; Logothetis, M. Quality of service differentiation of elastic and adaptive services in CDMA networks: A mathematical modelling approach. Wirel. Netw. 2018, 24, 1279–1295. [Google Scholar] [CrossRef] [Green Version]
- Nowak, B.; Piechowiak, M.; Stasiak, M.; Zwierzykowski, P. An analytical model of a system with priorities servicing a mixture of different elastic traffic streams. Bull. Pol. Acad. Sci. Tech. Sci. 2020, 68, 263–270. [Google Scholar]
- Hanczewski, S.; Stasiak, M.; Weissenberg, J. A model of a system with stream and elastic traffic. Accept. Publ. IEEE Access 2021, 9, 7789–7796. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscholios, I.D. Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls. Telecom 2021, 2, 28-41. https://doi.org/10.3390/telecom2010003
Moscholios ID. Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls. Telecom. 2021; 2(1):28-41. https://doi.org/10.3390/telecom2010003
Chicago/Turabian StyleMoscholios, Ioannis D. 2021. "Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls" Telecom 2, no. 1: 28-41. https://doi.org/10.3390/telecom2010003
APA StyleMoscholios, I. D. (2021). Probabilistic Retry and Threshold Multirate Loss Models for Impatient Calls. Telecom, 2(1), 28-41. https://doi.org/10.3390/telecom2010003