# A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

- Channel Estimation using superimposed pilots;
- Data Detection;
- Interference Mitigation generated in the data detection process, using an Iterative Block—Decision Feedback Equalization technique (IB-DFE) [20].

## 2. System and Signal Characterization

- For the ZF receiver, as:$${B}_{k}={\left({H}_{k}^{H}{H}_{k}\right)}^{-1}{H}_{k}^{H},$$
- Using the MRC receiver, as:$${B}_{k}={H}_{k}^{H},$$
- Using the EGC receiver, as:$${{\rm B}}_{k}=\mathrm{exp}\left\{j\mathrm{arg}\left({H}_{k}^{H}\right)\right\},$$

- For MRC: ${\left[A\right]}_{i,i\prime}={\left[H\right]}_{{}_{i,i\prime}}^{H}$.
- For EGC: ${\left[A\right]}_{i,i\prime}=\mathrm{exp}\left(j\mathrm{arg}\left({\left[H\right]}_{i,i\prime}\right)\right)$, that is, they have absolute value 1 and phase identical to the corresponding element of the matrix $H$.

## 3. Channel Estimation

_{G}, with T and T

_{G}denoting the duration of the useful part of the block and the cyclic prefix, respectively.

- Obtain the channel estimates from the pilots (remove the data from the received signal, estimated from the previous iteration, if not the first iteration);
- Obtain the channel estimates from the data, after removing the pilots from the received signal (which represents interference);
- Combine the channel estimates obtained from 1. and 2., to improve the estimate of the channel, and repeat the process.

## 4. Performance Results

#### 4.1. Channel Estimation with Conventional Pilots

_{b}/N

_{0}values required for a certain BER, but the relative positions of curves do not change significantly.

#### 4.2. Channel Estimation with Superimposed Pilots

- Perform an initial channel estimation using the pilots (added to the data).
- Remove the pilots (that represent interference), detect the data, and perform an initial channel estimate using the data.
- Combine the channel estimate obtained from step 1. with that of step 2.
- Repeat steps 1 to 3 iteratively, with the new improved channel estimates, and removing the estimated data from the pilots of step 1.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Rusek, F.; Persson, D.; Lau, B.K.; Larsson, E.G.; Marzetta, T.L.; Edfors, O.; Tufvesson, F. Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Process. Mag.
**2013**, 30, 40–60. [Google Scholar] [CrossRef] [Green Version] - Hassan, N.; Fernando, X. Massive MIMO Wireless Networks: An Overview. Electronics
**2017**, 6, 63. [Google Scholar] [CrossRef] [Green Version] - Rappaport, T.S.; Sun, S.; Mayzus, R.; Zhao, H.; Azar, Y.; Wang, K.; Wong, G.N.; Schulz, J.K.; Samimi, M.; Gutierrez, F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access
**2013**, 1, 335–349. [Google Scholar] [CrossRef] - IEEE 802.11 Task Group AD, PHY/MAC Complete Proposal Specification. Available online: http://www.ieee802.org/11/Reports/tgad_update.htm (accessed on 12 March 2020).
- Nie, S.; MacCartney, G.; Sun, S.; Rappaport, T. 28 GHz and 73 GHz Signal Outage Study for Millimeter Wave Cellular and Backhaul Communications. In Proceedings of the 2014 IEEE ICC, Sydney, Australia, 10–14 June 2014. [Google Scholar]
- Han, S.; Lin, C.; Xu, Z.; Rowell, C. Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G. IEEE Commun. Mag.
**2015**, 53, 186–193. [Google Scholar] [CrossRef] - Larsson, E.; Edfors, O.; Tufvesson, F.; Marzetta, T. Massive MIMO for next generation wireless systems. IEEE Commun. Mag.
**2014**, 52, 186–195. [Google Scholar] [CrossRef] [Green Version] - Akpakwu, G.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A Survey on 5G Networks for the Internet of Things: Communication Technologies and Challenges. IEEE Access
**2017**, 6, 3619–3647. [Google Scholar] [CrossRef] - Sachs, J.; Wikstrom, G.; Dudda, T.; Baldemair, R.; Kittichokechai, K. 5G Radio Network Design for Ultra-Reliable Low-Latency Communication. IEEE Network
**2018**, 32, 24–31. [Google Scholar] [CrossRef] - Da Silva, M.M. Cable and Wireless Networks: Theory & Practice, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781498746816. [Google Scholar]
- Da Silva, M.M.; Dinis, R. Iterative Frequency-Domain Detection and Channel Estimation for Space-Time Block Codes European Transactions on Telecommunications; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; Volume 22, pp. 339–351. [Google Scholar]
- Li, Y.; Han, K.; Dong, C. A Multi-Band Low-Noise Transmitter with Digital Carrier Leakage Suppression and Linearity Enhancement. IEEE Trans. Circuits Syst. I
**2013**, 60, 1209–1219. [Google Scholar] [CrossRef] - Gusmão, A.; Dinis, R.; Conceição, J.; Esteves, N. Comparison of Two Modulation Choices for Broadband Wireless Communications. In Proceedings of the VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference, Tokyo, Japan, 15–18 May 2000. [Google Scholar]
- Da Silva, M.M.; Dinis, R.; Guerreiro, J. Implicit Pilots for an Efficient Channel Estimation in Simplified Massive MIMO Schemes with Precoding. Int. J. Antennas Propag.
**2019**, 2019. [Google Scholar] [CrossRef] - Da Silva, M.M.; Dinis, R. A Simplified Massive MIMO Implemented with Pre or Post-Processing. Phys. Commun.
**2017**, 1, 1–12. [Google Scholar] [CrossRef] - Dinis, R.; Lam, C.; Falconer, D. Joint frequency-domain equalization and channel estimation using superimposed pilots. In Proceedings of the IEEE Wireless Communications and Networking Conference, Las Vegas, NV, USA, 31 March–3 April 2008. [Google Scholar]
- Li, H.; Jin, R.; Wei, S.; Cheng, W.; Kong, W.; Liu, P. Distributed Structured Compressive Sensing-Based Time-Frequency Joint Channel Estimation for Massive MIMO-OFDM Systems. Mob. Inf. Syst.
**2019**. [Google Scholar] [CrossRef] - Riadi, A.; Boulouird, M.; Hassan, M. ZF/MMSE and OSIC Detectors for UpLink OFDM Massive MIMO systems. In Proceedings of the 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, Jordan, 9–11 April 2019. [Google Scholar]
- Benvenuto, N.; Dinis, R.; Falconer, D.; Tomasin, S. Single Carrier Modulation with Non-Linear Frequency Domain Equalization: An Idea Whose Time Has Come—Again. IEEE Proc.
**2010**, 98, 69–96. [Google Scholar] [CrossRef] [Green Version] - Da Silva, M.M.; Correia, A.; Dinis, R.; Souto, N.; Silva, J. Transmission Techniques for Emergent Multicast and Broadcast Systems, 1st ed.; CRC Press Auerbach Publications: New York, NY, USA, 2010; ISBN 9781439815939. [Google Scholar]
- Da Silva, M.M.; Monteiro, F.A. MIMO Processing for 4G and Beyond: Fundamentals and Evolution; CRC Press Auerbach Publications: Boca Raton, FL, USA, 2014; ISBN 9781466598072. [Google Scholar]
- Dinis, R.; Montezuma, P.; Souto, N.; Silva, J. Iterative Frequency-Domain Equalization for General Constellations. In Proceedings of the 2010 IEEE Sarnoff Symposium, Princeton, NJ, USA, 12–14 April 2010. [Google Scholar]
- Dinis, R.; Silva, J.C.; Souto, N.; Montezuma, P. On the Design of Turbo Equalizers for SC-FDE Schemes with Different Error Protections. In Proceedings of the VTC’2010 Fall, Ottawa, ON, Canada, 6–9 September 2010. [Google Scholar]

**Figure 1.**Block diagram of massive Multiple Input–Multiple Output (m-MIMO) with Single-Carrier with Frequency-Domain Equalization (SC-FDE) signals.

**Figure 4.**Bit Error Rate (BER) results for 4 × 32 MIMO with conventional pilots versus ideal channel estimation.

**Figure 5.**BER results for 4 × 32 MIMO with conventional pilots and different iteration of interference cancellation.

**Figure 8.**BER results for 4 × 32 MIMO with superimposed pilots, with two versus four iterations of the iterative channel estimator.

**Figure 9.**BER results for 4 × 32 MIMO with superimposed pilots, with pilot power of 0 dB versus −3 dB.

**Figure 10.**BER results for 4 × 32 MIMO with superimposed pilots, with a block of 5 versus 10 data symbols.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Marques da Silva, M.; Dinis, R.; Guerreiro, J.
A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE. *Telecom* **2020**, *1*, 3-17.
https://doi.org/10.3390/telecom1010002

**AMA Style**

Marques da Silva M, Dinis R, Guerreiro J.
A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE. *Telecom*. 2020; 1(1):3-17.
https://doi.org/10.3390/telecom1010002

**Chicago/Turabian Style**

Marques da Silva, Mário, Rui Dinis, and João Guerreiro.
2020. "A Low Complexity Channel Estimation and Detection for Massive MIMO Using SC-FDE" *Telecom* 1, no. 1: 3-17.
https://doi.org/10.3390/telecom1010002