Carbon Footprint of Oxygenated Gasolines: Case Studies in Latin America, Asia, and Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Boundaries
2.2. Data Sources
2.2.1. Gasoline Blendstock Production
2.2.2. Corn Ethanol Production
2.2.3. Sugarcane Ethanol Production
2.2.4. ETBE Production
2.2.5. Land Use Change
2.2.6. Distribution
2.2.7. End Use
2.3. Fuel Blend Modeling
3. Results
3.1. Unblended Stream
3.2. Country Case Studies
3.3. Sensitivity Analysis
4. Conclusions
- Results for each country show that adding oxygen to gasoline reduces GHG emissions, and that blends with ETBE produce less GHG emissions than those using only ethanol as an oxygenate;
- At the common oxygen target of 3.7 wt.%, results from Colombia and Japan at an octane of 89 RON show that the replacement of reformate in E0 with an oxygenate to boost octane results in GHG reduction of 6–9 percent. For the higher octane 98 RON scenario in France, GHG reductions for oxygenated fuels range from 7–10 percent;
- Relative to E0, the highest well-to-wheel GHG reduction (19 percent) was for a blend of 51% ETBE to achieve 8.0 wt.% oxygen in France, the equivalent of E23;
- ETBE blends produced GHG reductions that were 38–88% greater than ethanol-only blends at the same oxygen level due to the lower aromatic content required to meet the octane specifications with ETBE blends;
- Emission reductions from oxygenated fuels were driven in the combustion phase, due to the lower carbon and higher renewable content of ethanol and ETBE blends. The overall GHG reductions are, thus, relatively insensitive to variations in two major upstream inputs, ethanol feedstock and ethanol production country.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anenberg, S.; Miller, J.; Henze, D.; Minjares, R. A Global Snapshot of the Air Pollution-Related Health Impacts of Transportation Sector Emissions in 2010 and 2015; International Council on Clean Transportation: Washington, DC, USA, 2019. [Google Scholar]
- Gibbs, L.; Anderson, B.; Barnes, K.; Engeler, G.; Freel, J.; Horn, J.; Ingham, M.; Kohler, D.; Lesnini, D.; MacArthur, R.; et al. Motor Gasolines Technical Review; Chevron Corporation: San Ramon, CA, USA, 2009. [Google Scholar]
- Wang, M.; Wu, M.; Huo, H. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types. Environ. Res. Lett. 2007, 2, 24001–24013. [Google Scholar] [CrossRef]
- Fazeni-Fraisl, K.; Lindorfer, J. Comparative lifecycle assessment of first- and second-generation bio-isobutene as a drop-in substitute for fossil isobutene. Biofuels Bioprod. Bioref. 2023, 17, 207–225. [Google Scholar] [CrossRef]
- van Kasteren, J.M.N. Production of Bioalcohols via Gasification. In Handbook of Biofuels Production, 2nd ed.; Luque, R., Lin, C.S.K., Wilson, K., Clark, J., Eds.; Woodhead Publishing: Sawston, UK, 2016; pp. 495–507. [Google Scholar]
- Gomez, L. Colombian Increases Biofuels Blend Mandate to 10%. 2018. Available online: https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Biofuels%20Annual_Bogota_Colombia_7-6-2018.pdf (accessed on 4 January 2024).
- Resolución 447 de 2003 Ministerio de Ambiente, Vivienda y Desarrollo Territorial. 2003. Available online: https://ojsrevistaing.uniandes.edu.co/ojs/index.php/revista/article/view/148 (accessed on 19 March 2024).
- Wang, M.; Lee, U.; Kwon, H.; Xu, H. Life-Cycle Greenhouse Gas Emission Reductions of Ethanol with the GREET Model. In Proceedings of the Presentation at National Ethanol Conference, Virtual, 16–18 February 2021. [Google Scholar]
- Canabarro, N.I.; Silva-Ortiz, P.; Nogueira, L.A.H.; Cantarella, H.; Maciel-Filho, R.; Souza, G.M. Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala. Renew. Sustain. Energy Rev. 2023, 171, 113019. [Google Scholar] [CrossRef]
- Beauchet, S.; Guichet, X.; Guyon, O.; Melgar, J.; Pinard, A.; Ternel, C. Study of Greenhouse Gas Emissions from Superethanol-E85 Vehicles in Lifecycle Analysis; IFPEN: Tokyo, Japan, 2022. [Google Scholar]
- Yang, Q.; Chen, G.Q. Greenhouse gas emissions of corn–ethanol production in China. Ecol. Model. 2013, 252, 176–184. [Google Scholar] [CrossRef]
- Kadam, K.L.; Camobreco, V.J.; Glazebrook, B.E.; Forrest, L.H.; Jacobson, W.A.; Simeroth, D.C.; Blackburn, W.J.; Nehoda, K.C. Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass; Report NREL/TP-580-25688; National Renewable Energy Laboratory: Golden, CO, USA, 1999.
- U.S. Dept of Energy Argonne National Laboratory. GREET Fuel-Cycle Model. 2021. Available online: https://greet.es.anl.gov/greet_1_series (accessed on 4 January 2024).
- Sluder, C.S.; Smith, D.E.; Anderson, J.E.; Leone, T.G.; Shelby, M.H. U.S. DRIVE Fuels Working Group Engine and Vehicle Modeling Study to Support Life-Cycle Analysis of High-Octane Fuels; Oak Ridge National Laboratory Report; US Department of Energy: Washington, DC, USA, 2019.
- Croezen, H.; Kampman, B. The impact of ethanol and ETBE blending on refinery operations and GHG-emissions. Energy Policy 2009, 37, 5226–5238. [Google Scholar] [CrossRef]
- European Committee on Standardization. European Standardisation on Petroleum and related products. In Proceedings of the 21st International Conference on Renewable Mobility, Berlin, Germany, 22–23 January 2024. [Google Scholar]
- U.S. Department of Energy Alternative Fuels Data Center. Global Ethanol Production by Country or Region. Available online: https://afdc.energy.gov/data (accessed on 19 February 2024).
- Raj, T.; Chandrasekhar, K.; Kumar, A.N.; Banu, J.R.; Yoon, J.J.; Bhatia, S.K.; Yang, Y.-H.; Varjani, S.; Kim, S.-H. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. Bioresour. Technol. 2022, 344, 126292. [Google Scholar] [CrossRef] [PubMed]
- Agricultural Marketing Resource Center. Cellulosic Ethanol. Available online: https://www.agmrc.org/commodities-products/biomass/cellulosic-ethanol (accessed on 4 January 2024).
- Abella, J.P.; Motazedi, K.; Guo, J.; Cousart, K.; Jing, L.; Bergerson, J.A. PRELIM: The Petroleum Refinery Lifecycle Inventory Model, v1.4. 2020. Available online: https://ucalgary.ca/energy-technology-assessment/open-source-models/prelim (accessed on 4 January 2024).
- PRELIM Publications. Available online: https://www.ucalgary.ca/energy-technology-assessment/publications (accessed on 8 February 2024).
- Gary, J.H.; James, H.H.; Mark, J.K.; David, G. Petroleum Refining: Technology and Economics, 5th ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar] [CrossRef]
- Karonis, D.; Anastopoulos, G.; Lois, E.; Stournas, S. Impact of Simultaneous ETBE and Ethanol Addition on Motor Gasoline Properties. SAE Int. J. Fuels Lubr. 2008, 1, 1584–1594. [Google Scholar] [CrossRef]
- Elgowainy, A.; Han, J.; Cai, H.; Wang, M.; Forman, G.S.; DiVita, V.B. Energy Efficiency and Greenhouse Gas Emission Intensity of Petroleum Products at U.S. Refineries. Environ. Sci. Technol. 2014, 48, 7612–7624. [Google Scholar] [CrossRef]
- U.S. Dept. of Agriculture. U.S. Biofuels Exports in 2022. Available online: https://fas.usda.gov/data/commodities/biofuels (accessed on 4 January 2024).
- Ecoinvent, Ecoinvent v3.7. Available online: https://support.ecoinvent.org/ecoinvent-version-3.7 (accessed on 4 January 2024).
- U.S. Dept of Energy National Renewable Energy Laboratory (NREL). U.S. Lifecycle Inventory Database. 2012. Available online: https://www.lcacommons.gov/nrel/search (accessed on 4 January 2024).
- IPCC. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 4 January 2024).
- Hamid, H.; Ali, M.A. (Eds.) Handbook of MTBE and Other Gasoline Oxygenates, 1st ed.; Routledge Publishing: London, UK, 2004. [Google Scholar]
- Torres, J.; Molina, D.; Pinto, C.; Rueda, F. Study of gasoline mixture with 10% of anhydrous ethanol. Physic-chemical properties evaluation; Estudio de la mezcla de gasolina con 10% de etanol anhidro. Evaluacion de propiedades fisicoquimicas. CTF Cienc. Tecnol. Futuro 2002, 2, 71–82. [Google Scholar]
- Anderson, J.E.; Kramer, U.; Mueller, S.A.; Wallington, T.J. Octane Numbers of Ethanol- and Methanol-Gasoline Blends Estimated from Molar Concentrations. Energy Fuels 2010, 24, 6576–6585. [Google Scholar] [CrossRef]
- Bourhis, G.; Solari, J.P.; Morel, V.; Dauphin, R. Using Ethanol’s Double Octane Boosting Effect with Low RON Naphtha-Based Fuel for an Octane on Demand SI Engine. SAE Int. J. Engines 2016, 9, 84–98. [Google Scholar] [CrossRef]
- Dalli, D.; Lois, E.; Karonis, D. Vapor Pressure and Octane Numbers of Ternary Gasoline–Ethanol–ETBE Blends. J. Energy Eng. 2014, 140, A4014002. [Google Scholar] [CrossRef]
- Nikola, R.; Bourhis, G.; Loos, M.; Dauphin, R. Understanding Octane Number Evolution for Enabling Alternative Low RON Refinery Streams and Octane Boosters as Transportation Fuels. Fuel 2015, 150, 41–47. [Google Scholar] [CrossRef]
- Junseok, C.; Kalghatgi, G.; Amer, A.; Adomeit, P.; Rohs, H.; Heuser, B. Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability with EURO6 Engine-Out NOx Emission. SAE Int. J. Engines 2013, 6, 101–119. [Google Scholar] [CrossRef]
- Tamour, J.; Nasir, E.F.; Ahmed, A.; Badra, J.; Djebbi, K.; Beshir, M.; Ji, W.; Sarathy, S.M.; Farooq, A. Ignition Delay Measurements of Light Naphtha: A Fully Blended Low Octane Fuel. Proc. Combust. Inst. 2017, 36, 315–322. [Google Scholar] [CrossRef]
- Oyekan, S.O. Catalytic Naphtha Reforming Process; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Koupal, J.; Palacios, C. Impact of new fuel specifications on vehicle emissions in Mexico. Atmos. Environ. 2019, 201, 41–49. [Google Scholar] [CrossRef]
- Noriega, M.; Trejos, E.; Toro, C.; Koupal, J.; Pachon, J. Impact of oxygenated fuels on atmospheric emissions in major Colombian cities. Atmos. Environ. 2023, 308, 119863. [Google Scholar] [CrossRef]
Country | RON | 0% | 1.3% | 2.7% | 3.7% | 5.2% | 6.9% | 8.0% |
---|---|---|---|---|---|---|---|---|
Japan | 89 a | E0 | ETBE8 | ETBE17 | E10, ETBE24 | - | - | - |
Colombia | 89 a, 91–96 b | E0 | - | - | E10, ETBE24, E8, ETBE6, E6, ETBE11, E5, ETBE13, E3, ETBE17 | - | - | - |
France | 95 a, 98 a | E0 | - | - | E10, ETBE24, E5, ETBE13 | E15, ETBE33, E10, ETBE11, E5, ETBE22 | E20, ETBE44, E15, ETBE11, E10, ETBE22, E5, ETBE33 | E23, ETBE51, E20, ETBE7, E15, ETBE18, E10, ETBE29, E5, ETBE40 |
Japan | Colombia | France | |
---|---|---|---|
Gasoline BOB Production Location | Middle East | US Gulf Coast | Middle East |
ETBE Production Location | US Gulf Coast | US Gulf Coast | France |
Ethanol Production Location (Primary) | Brazil | Colombia | France |
Ethanol Production Location (Secondary) | US Midwest | US Midwest | - |
Ethanol Feedstock (Primary) | Sugarcane | Sugarcane | Global mix (sugarcane, corn, beet, wood) |
Ethanol Feedstock (Secondary) | Sugarcane | Sugarcane | - |
Percent of Ethanol from Primary Source | 55% (ETBE) 100% (Ethanol blends) | 55% | 100% |
Gasoline Blending Location | Japan | Colombia | France |
Transport of Oxygenate to Consumer | Pipeline (ETBE), Truck (EtOH) |
Component | Volume (%) | RON | MON | Aromatic (vol.%) |
---|---|---|---|---|
Isopentane | 31 | 92.6 | 90.4 | 0 |
FCC Gasoline | 33 | 92.6 | 78.9 | 22.0 |
HC Gasoline | 33 | 77.3 | 74.7 | 0 |
Alkylate | 3.4 | 93.1 | 91.3 | 0 |
Overall | 100 | 87.6 | 81.5 | 7.1 |
Dry Milling w/o Corn Oil Extraction | Dry Milling w/corn Oil Extraction | Wet Milling | |
---|---|---|---|
Ethanol yield per bushel of corn (gal) | 2.86 | 2.88 | 2.67 |
% of U.S. Production | 17.7% | 70.9% | 11.4% |
Product | Stage | Location | CO2 | CH4 | N2O |
---|---|---|---|---|---|
ETBE | Production (excluding ethanol) | U.S. a | 12.06 | 0.17 | 2.4 × 10−4 |
Europe a | 14.82 | 0.12 | 2.0 × 10−4 | ||
Ethanol | Corn Production | U.S. b | 7.50 | 0.018 | 3.6 × 10−2 |
Corn Ethanol Conversion | U.S. b | 25.30 | 0.077 | 7.3 × 10−4 | |
Sugarcane Production | Brazil b | 7.76 | 0.027 | 1.8 × 10−2 | |
Sugarcane Ethanol Conversion | Brazil b | 0.30 | 0.034 | 6.3 × 10−3 | |
Global Mix Production | Europe c | 11.44 | 0.046 | 2.1 × 10−2 | |
Ethanol Conversion | Europe c | 15.49 | 0.039 | 7.6 × 10−3 | |
Land Use | U.S. & Foreign b | 7.51 | - | 1.6 × 10−3 | |
MTBE | Production | U.S. b | 15.78 | 0.19 | 3.2 × 10−4 |
Reformate | Extraction, Production | U.S., Middle East d | 14.14 | 0.096 | 1.8 × 10−4 |
Naphtha | Extraction, Production | U.S., Middle East d | 8.00 | 0.090 | 1.1 × 10−4 |
Other feedstocks | Extraction, Production | U.S., Middle East d | 15.78 | 0.109 | 2.7 × 10−4 |
Product | Lower Heating Value (btu/gal) | Carbon Content (g/gal) | Biogenic (wt.%) | CO2 (g/MJ) |
---|---|---|---|---|
ETBE | 102.1 | 1984 | 42 | 39.1 |
Ethanol | 80.5 | 1560 | 100 | - |
MTBE | 98.7 | 1914 | - | 71.1 |
Reformate | 135.1 | 2983 | - | 81.0 |
Naphtha | 123.4 | 2333 | - | 69.4 |
Other Feedstocks | 122.5 | 2433 | - | 72.8 |
Fuel Component | Density (kg/m3) | Oxygen (vol. %) | Aromatic (vol. %) | Molar Mass (g/mol) | Octane (RON) |
---|---|---|---|---|---|
ETBE | 742 | 15.7 | - | 102.2 | 118.0 |
Ethanol | 789 | 34.8 | - | 46.1 | 123.0 |
Reformate | 866 | - | 57.5 | 110.0 | 100.0 |
Naphtha | 725 | - | - | 124.8 | 64.0 |
Other feedstocks | 745 | - | 7.1 | 110.0 | 87.6 |
Oxygen vol.%: | 0% | 1.3% | 3.7% | 3.7% | 8.0% | 8.0% |
---|---|---|---|---|---|---|
Blend: | E0 | ETBE8 | E10 | ETBE24 | E23 | ETBE51 |
Japan (89 RON) | 98.0 | 95.3 | 93.8 | 90.1 | - | - |
Colombia (89 RON) | 94.0 | - | 88.1 | 85.5 | - | - |
France (98 RON) | 101.5 | - | 93.9 | 91.0 | 88.6 | 81.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koupal, J.; Cashman, S.; Young, B.; Henderson, A.D. Carbon Footprint of Oxygenated Gasolines: Case Studies in Latin America, Asia, and Europe. Fuels 2024, 5, 123-136. https://doi.org/10.3390/fuels5020008
Koupal J, Cashman S, Young B, Henderson AD. Carbon Footprint of Oxygenated Gasolines: Case Studies in Latin America, Asia, and Europe. Fuels. 2024; 5(2):123-136. https://doi.org/10.3390/fuels5020008
Chicago/Turabian StyleKoupal, John, Sarah Cashman, Ben Young, and Andrew D. Henderson. 2024. "Carbon Footprint of Oxygenated Gasolines: Case Studies in Latin America, Asia, and Europe" Fuels 5, no. 2: 123-136. https://doi.org/10.3390/fuels5020008
APA StyleKoupal, J., Cashman, S., Young, B., & Henderson, A. D. (2024). Carbon Footprint of Oxygenated Gasolines: Case Studies in Latin America, Asia, and Europe. Fuels, 5(2), 123-136. https://doi.org/10.3390/fuels5020008