CO Oxidation Capabilities of La- and Nd-Based Perovskites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ni-Doped Perovskite
2.2. Sample Characterization
2.3. Catalytic Tests
3. Results
3.1. Characterization of Newly Synthesized Perovskite
3.2. Catalytic Results
3.3. Hysteresis of Specific Activity, Ignition and Extinction
3.4. SEM Images and XRD Diffractograms after CO Oxidation
4. Discussion
- (i)
- At lower temperatures, both Langmuir–Hinshelwood- or Eley–Rideal-type mechanisms are plausible as both explain the exponential increase of activity. In the case of the former, catalytic activity would be hindered by full coverage of CO—as both reactants need to adsorb. Only with increasing temperature and subsequent desorption of CO—freeing adsorption sites for O2 adsorption—can CO oxidation occur. This dependence on CO desorption might serve as an explanation for changes of specific activity as different compositions lead to different CO desorption energies. This mechanism at lower temperatures was proposed by Wang et al. for La0.4Sr0.6CoO3-δ [34]. Yang et al. investigated a low-temperature Langmuir–Hinshelwood mechanism promoted by oxygen vacancies [35]. An Eley–Rideal mechanism in the presence of Fe3+ ions was postulated for Fe2O3 by Waglöhner et al. [36]. Depending on surface termination and crystallographic direction of facets exposed to the reaction atmosphere, such ions are present in all investigated samples.
- (ii)
- Around ignition, a change of mechanisms is likely: Wang et al. suggest a Mars-van-Krevelen (MvK) mechanism for La0.4Sr0.6CoO3-δ at high temperatures [34] and Liu et al. put forward either a conventional or a carbonate-mediated MvK mechanism for CO oxidation over Co-doped ceria catalysts [37]. This aligns with the presence of CaCO3 in Nd06 and Nd09. Moreover, oxygen vacancies play a crucial role in MvK mechanisms and have also be found to be important for CO oxidation using Ce-doped LaCoO3 catalysts [25]. Increasing Ca2+ contents lead to a higher number of vacancies in LaFeO3- and NdFeO3-based perovskites, which in turn lead to easier O2 adsorption. That can explain the generally higher catalytic activities of the B-site undoped samples with 40% Ca content [28].
- (iii)
- The linear increase of the catalytic activity after ignition might be related to diffusion limitation.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geller, S. Crystallographic studies of perovskite-like compounds. 5. Relative ionic sizes. Acta Crystallogr. 1957, 10, 248–251. [Google Scholar] [CrossRef] [Green Version]
- Lindenthal, L.; Rameshan, R.; Summerer, H.; Ruh, T.; Popovic, J.; Nenning, A.; Löffler, S.; Opitz, A.K.; Blaha, P.; Rameshan, C. Modifying the Surface Structure of Perovskite-Based Catalysts by Nanoparticle Exsolution. Catalysts 2020, 10, 268. [Google Scholar] [CrossRef] [Green Version]
- Lindenthal, L.; Ruh, T.; Rameshan, R.; Summerer, H.; Nenning, A.; Herzig, C.; Löffler, S.; Limbeck, A.; Opitz, A.K.; Blaha, P.; et al. Ca-doped rare earth perovskite materials for tailored exsolution of metal nanoparticles. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 1055–1070. [Google Scholar] [CrossRef]
- Hwang, J.; Rao, R.R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756. [Google Scholar] [CrossRef] [Green Version]
- Nishihata, Y.; Mizuki, J.; Akao, T.; Tanaka, H.; Uenishi, M.; Kimura, M.; Okamoto, T.; Hamada, N. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002, 418, 164–167. [Google Scholar] [CrossRef]
- Shin, T.H.; Myung, J.H.; Verbraeken, M.; Kim, G.; Irvine, J.T.S. Oxygen deficient layered double perovskite as an active cathode for CO2 electrolysis using a solid oxide conductor. Faraday Discuss. 2015, 182, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Stöger, B.; Hieckel, M.; Mittendorfer, F.; Wang, Z.M.; Fobes, D.; Peng, J.; Mao, Z.Q.; Schmid, M.; Redinger, J.; Diebold, U. High Chemical Activity of a Perovskite Surface: Reaction of CO with Sr3Ru2O7. Phys. Rev. Lett. 2014, 113, 116101. [Google Scholar] [CrossRef] [Green Version]
- Katz, M.B.; Zhang, S.Y.; Duan, Y.W.; Wang, H.J.; Fang, M.H.; Zhang, K.; Li, B.H.; Graham, G.W.; Pan, X.Q. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: Bulk versus surface re-dispersion. J. Catal. 2012, 293, 145–148. [Google Scholar] [CrossRef]
- Thalinger, R.; Opitz, A.K.; Kogler, S.; Heggen, M.; Stroppa, D.; Schmidmair, D.; Tappert, R.; Fleig, J.; Klotzer, B.; Penner, S. Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides. J. Phys. Chem. C 2015, 119, 11739–11753. [Google Scholar] [CrossRef] [Green Version]
- Mueller, D.N.; Machala, M.L.; Bluhm, H.; Chueh, W.C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 2015, 6, 6097. [Google Scholar] [CrossRef] [Green Version]
- Bedel, L.; Roger, A.C.; Estournes, C.; Kiennemann, A. Co-0 from partial reduction of La(Co,Fe)O3 perovskites for Fischer-Tropsch synthesis. Catal. Today 2003, 85, 207–218. [Google Scholar] [CrossRef]
- Bedel, L.; Roger, A.C.; Rehspringer, J.L.; Zimmermann, Y.; Kiennemann, A. La1−yCo0.4Fe0.6O3−δ perovskite oxides as catalysts for Fischer-Tropsch synthesis. J. Catal. 2005, 235, 279–294. [Google Scholar] [CrossRef]
- Escalona, N.; Fuentealba, S.; Pecchi, G. Fischer-Tropsch synthesis over LaFe1−xCoxO3 perovskites from a simulated biosyngas feed. Appl. Catal. A 2010, 381, 253–260. [Google Scholar] [CrossRef]
- Ao, M.; Pham, G.H.; Sage, V.; Pareek, V. Selectivity enhancement for higher alcohol product in Fischer-Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts. Fuel 2017, 206, 390–400. [Google Scholar] [CrossRef]
- Zhan, H.J.; Li, F.; Gao, P.; Zhao, N.; Xiao, F.K.; Wei, W.; Zhong, L.S.; Sun, Y.H. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors. J. Power Source 2014, 251, 113–121. [Google Scholar] [CrossRef]
- Tien-Thao, N.; Alamdari, H.; Zahedi-Niaki, M.H.; Kaliaguine, S. LaCo1−xCuxO3−δ perovskite catalysts for higher alcohol synthesis. Appl. Catal. A 2006, 311, 204–212. [Google Scholar] [CrossRef]
- Huš, M.; Kopač, D.; Likozař, B. Catalytic Hydrogenation of Carbon Dioxide to Methanol: Synergistic Effect of Bifunctional Cu/Perovskite Catalysts. ACS Catal. 2019, 9, 105–116. [Google Scholar] [CrossRef]
- Freund, H.J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO Oxidation as a Prototypical Reaction for Heterogeneous Processes. Angew. Chem. Int. Ed. 2011, 50, 10064–10094. [Google Scholar] [CrossRef]
- Libby, W.F. Promising catalyst for auto exhaust. Science 1971, 171, 499. [Google Scholar] [CrossRef] [Green Version]
- Voorhoev, R.J.; Remeika, J.P.; Matthias, B.T.; Freeland, P.E. Rare-earth oxides of manganese and cobalt rival platinum for treatment of carbon-monoxide in auto exhaust. Science 1972, 177, 353. [Google Scholar] [CrossRef]
- Nitadori, T.; Misono, M. Catalytic properties of La1−xA′xFeO3 (A′ = Sr,Ce) and La1−xCexCoO3. J. Catal. 1985, 93, 459–466. [Google Scholar] [CrossRef]
- Nitadori, T.; Ichiki, T.; Misono, M. Catalytic properties of perovskite-type mixed oxides (ABO3) consisting of rare-earth and 3d transition-metals—The roles of the A-site and B-site ions. Bull. Chem. Soc. Jpn. 1988, 61, 621–626. [Google Scholar] [CrossRef] [Green Version]
- Song, K.S.; Kang, S.K.; Kim, S.D. Preparation and characterization of Ag/MnOx/perovskite catalysts for CO oxidation. Catal. Lett. 1997, 49, 65–68. [Google Scholar] [CrossRef]
- Singh, U.G.; Li, J.; Bennett, J.W.; Rappe, A.M.; Seshadri, R.; Scott, S.L. A Pd-doped perovskite catalyst, BaCe1−xPdxO3−δ, for CO oxidation. J. Catal. 2007, 249, 349–358. [Google Scholar] [CrossRef]
- Magalhaes, R.; Toniolo, F.S.; Da Silva, V.T.; Schmal, M. Selective CO oxidation reaction (SELOX) over cerium-doped LaCoO3 perovskite catalysts. Appl. Catal. A 2010, 388, 216–224. [Google Scholar] [CrossRef]
- Yan, X.K.; Huang, Q.; Li, B.; Xu, X.L.; Chen, Y.W.; Zhu, S.M.; Shen, S.B. Catalytic performance of LaCo0.5M0.5O3 (M = Mn, Cr, Fe, Ni, Cu) perovskite-type oxides and LaCo0.5Mn0.5O3 supported on cordierite for CO oxidation. J. Ind. Eng. Chem. 2013, 19, 561–565. [Google Scholar] [CrossRef]
- Huang, K.K.; Chu, X.F.; Yuan, L.; Feng, W.C.; Wu, X.F.; Wang, X.Y.; Feng, S.H. Engineering the surface of perovskite La0.5Sr0.5MnO3 for catalytic activity of CO oxidation. Chem. Commun. 2014, 50, 9200–9203. [Google Scholar] [CrossRef]
- Popovic, J.; Lindenthal, L.; Rameshan, R.; Ruh, T.; Nenning, A.; Löffler, S.; Opitz, A.K.; Rameshan, C. High Temperature Water Gas Shift Reactivity of Novel Perovskite Catalysts. Catalysts 2020, 10, 582. [Google Scholar] [CrossRef]
- Lindenthal, L.; Popovic, J.; Rameshan, R.; Huber, J.; Schrenk, F.; Ruh, T.; Nenning, A.; Löffler, S.; Opitz, A.K.; Rameshan, C. Novel perovskite catalysts for CO2 utilization—Exsolution enhanced reverse water-gas shift activity. Appl. Catal. B 2021, 292, 120183. [Google Scholar] [CrossRef]
- Pechini, M.P. Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor. U.S. Patent 3,330,697, 11 July 1967. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Degen, T.; Sadki, M.; Bron, E.; Konig, U.; Nenert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [Google Scholar] [CrossRef] [Green Version]
- ICDD. PDF-4+ 2021; International Centre for Diffraction Data: Newtown Square, PA, USA, 2020. [Google Scholar]
- Wang, X.Y.; Huang, K.K.; Yuan, L.; Xi, S.B.; Yan, W.S.; Geng, Z.B.; Cong, Y.G.; Sun, Y.; Tan, H.; Wu, X.F.; et al. Activation of Surface Oxygen Sites in a Cobalt-Based Perovskite Model Catalyst for CO Oxidation. J. Phys. Chem. Lett. 2018, 9, 4146–4154. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, S.Y.; Fang, Y.R.; Hoang, S.; Li, L.; Yang, W.W.; Liang, Z.F.; Wu, J.; Hu, J.P.; Xiao, W.; et al. Oxygen Vacancy Promoted O2 Activation over Perovskite Oxide for Low-Temperature CO Oxidation. ACS Catal. 2019, 9, 9751–9763. [Google Scholar] [CrossRef]
- Wagloehner, S.; Reichert, D.; Leon-Sorzano, D.; Balle, P.; Geiger, B.; Kureti, S. Kinetic modeling of the oxidation of CO on Fe2O3 catalyst in excess of O2. J. Catal. 2008, 260, 305–314. [Google Scholar] [CrossRef]
- Liu, B.; Li, W.P.; Song, W.Y.; Liu, J. Carbonate-mediated Mars-van Krevelen mechanism for CO oxidation on cobalt-doped ceria catalysts: Facet-dependence and coordination-dependence. Phys. Chem. Chem. Phys. 2018, 20, 16045–16059. [Google Scholar] [CrossRef] [PubMed]
Sample | BET Area | Specific Activity at 500 °C | Specific Activity Before Extinction |
---|---|---|---|
La06 | 2.8 1 | 7.2 | 2.6 |
La09 | 3.8 1 | 6.1 | 3.5 |
Nd06 | 1.5 1 | 13.6 | 5.9 |
Nd09 | 2.2 1 | 8.5 | 3.4 |
NdCo | 1.2 1 | 12.7 | 4.6 |
NdNi | 2.4 | 7.3 | 3.5 |
LSF | 5.7 1 | 4.0 | 1.2 |
Sample | Ignition Temperature (°C) | Specific Activity Before Ignition | Specific Activity After Ignition | Extinction Temperature (°C) |
---|---|---|---|---|
La06 | 387 | 1.1 | 7.7 | 161 |
La09 | 334 | 0.8 | 5.2 | <50 |
Nd06 | 423 | 3.2 | 12.2 | 94 |
Nd09 | 409 | 0.8 | 7.3 | 146 |
NdCo 1 | 311 322 | 1.5 6.7 | 7.1 9.6 | 78 |
NdNi | 441 | 1.4 | 6.7 | <50 |
LSF | 311 | 0.4 | 3.5 | <50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruh, T.; Buchinger, R.; Lindenthal, L.; Schrenk, F.; Rameshan, C. CO Oxidation Capabilities of La- and Nd-Based Perovskites. Fuels 2022, 3, 31-43. https://doi.org/10.3390/fuels3010003
Ruh T, Buchinger R, Lindenthal L, Schrenk F, Rameshan C. CO Oxidation Capabilities of La- and Nd-Based Perovskites. Fuels. 2022; 3(1):31-43. https://doi.org/10.3390/fuels3010003
Chicago/Turabian StyleRuh, Thomas, Richard Buchinger, Lorenz Lindenthal, Florian Schrenk, and Christoph Rameshan. 2022. "CO Oxidation Capabilities of La- and Nd-Based Perovskites" Fuels 3, no. 1: 31-43. https://doi.org/10.3390/fuels3010003
APA StyleRuh, T., Buchinger, R., Lindenthal, L., Schrenk, F., & Rameshan, C. (2022). CO Oxidation Capabilities of La- and Nd-Based Perovskites. Fuels, 3(1), 31-43. https://doi.org/10.3390/fuels3010003