Nanoswelling Structures of Silicone Rubber Under Aluminum Nanoparticles Induced by 193 nm ArF Excimer Laser
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mejía-Salazar, J.R.; Oliveira, O.N., Jr. Plasmonic Biosensing. Chem. Rev. 2018, 118, 10617–10625. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-J.; Yoo, J.; Park, E.; Song, E.H.; Nam, J.-M. Plasmonic nanogap probes for surface-enhanced Raman scattering-based bioimaging and analysis. J. Phys. Chem. C 2024, 128, 17815–17824. [Google Scholar] [CrossRef]
- Li, X.; Mengu, D.; Yardimci, N.T.; Turan, D.; Charkhesht, A.; Ozcan, A.; Jarrahi, M. Plasmonic photoconductive terahertz focal-plane array with pixel super-resolution. Nat. Photonics 2024, 18, 139–148. [Google Scholar] [CrossRef]
- Goswami, L.; Aggarwal, N.; Krishna, S.; Singh, M.; Vashishtha, P.; Singh, S.P.; Husale, S.; Pandey, R.; Gupta, G. Au-nanoplasmonics-mediated surface plasmon-enhanced GaN nanostructured UV photodetectors. ACS Omega 2020, 5, 14535–14542. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Xu, H.; Wang, Z.M. Plasmon-Enhanced Light-Matter Interactions; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Ekinci, Y.; Solak, H.H.; Löffler, J.F. Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 2008, 104, 083107. [Google Scholar] [CrossRef]
- Maidecchi, G.; Gonella, G.; Zaccaria, R.P.; Moroni, R.; Anghinolfi, L.; Giglia, A.; Nannarone, S.; Mattera, L.; Dai, H.-L.; Canepa, M.; et al. Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays. ACS Nano 2013, 7, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Jha, S.K.; Ahmed, Z.; Agio, M.; Ekinci, Y.; Löffler, J.F. Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc. 2012, 134, 1966–1969. [Google Scholar] [CrossRef] [PubMed]
- Pogodin, S.; Hasan, J.; Baulin, V.A.; Webb, H.K.; Truong, V.K.; Nguyen, T.H.P.; Boshkovikj, V.; Fluke, C.J.; Watson, G.S.; Watson, J.A.; et al. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 2013, 104, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.; Berton, P.; Moraes, C.; Rogers, R.D.; Tufenkji, N. Nanodarts, nanoblades, and nanospikes: Mechano-bactericidal nanostructures and where to find them. Adv. Colloid Interface Sci. 2018, 252, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Nojiri, H.; Okoshi, M. Crack suppression of silica glass formed by zoned F2 laser-induced photochemical surface modification of hard silicone thin film coating on polycarbonate. Jpn. J. Appl. Phys. 2016, 55, 122701. [Google Scholar] [CrossRef]
- Nojiri, H.; Okoshi, M. Surface texturing effect on crack suppression of SiO2 film formed by F2 laser-induced photochemical surface modification of silicone on polycarbonate under heat resistance test. Jpn. J. Appl. Phys. 2017, 56, 085502. [Google Scholar] [CrossRef]
- Venzac, B. Light-based 3D printing and post-treatments of moulds for PDMS soft lithography. Lab Chip 2025, 25, 2129–2147. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Lim, T.; Seo, K.; Park, J.; Yang, J.; Jeong, S.-M.; Ju, S. Rapid mold-free fabrication of long functional PDMS fibers. NPG Asia Mater. 2022, 14, 13. [Google Scholar] [CrossRef]
- Iwasaki, K.; Yoshida, T.; Okoshi, M. Near-superhydrophobic silicone microcapsule arrays encapsulating ionic liquid electrolytes for micro-power storage assuming use in seawater. Sci. Rep. 2022, 12, 18264. [Google Scholar] [CrossRef] [PubMed]
- Shimanoe, K.; Endo, S.; Matsuyama, T.; Wada, K.; Okamoto, K. Localized surface plasmon resonance in deep ultraviolet region below 200 nm using a nanohemisphere on mirror structure. Sci. Rep. 2021, 11, 5169. [Google Scholar] [CrossRef] [PubMed]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okoshi, M. Nanoswelling Structures of Silicone Rubber Under Aluminum Nanoparticles Induced by 193 nm ArF Excimer Laser. Electron. Mater. 2025, 6, 15. https://doi.org/10.3390/electronicmat6040015
Okoshi M. Nanoswelling Structures of Silicone Rubber Under Aluminum Nanoparticles Induced by 193 nm ArF Excimer Laser. Electronic Materials. 2025; 6(4):15. https://doi.org/10.3390/electronicmat6040015
Chicago/Turabian StyleOkoshi, Masayuki. 2025. "Nanoswelling Structures of Silicone Rubber Under Aluminum Nanoparticles Induced by 193 nm ArF Excimer Laser" Electronic Materials 6, no. 4: 15. https://doi.org/10.3390/electronicmat6040015
APA StyleOkoshi, M. (2025). Nanoswelling Structures of Silicone Rubber Under Aluminum Nanoparticles Induced by 193 nm ArF Excimer Laser. Electronic Materials, 6(4), 15. https://doi.org/10.3390/electronicmat6040015

