Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators
Abstract
:1. Introduction
2. Experimental
2.1. Device Fabrication
2.2. Luminophore and Device Characterization
3. Results and Discussion
3.1. Spectroscopic and PV Properties
3.2. Limited Illumination
3.3. Laser Excitation
3.4. Regional Measurements
3.5. Projected Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Y.; Bai, Y. Performance improvement for building integrated photovoltaics in practice: A review. Energies 2021, 14, 178. [Google Scholar] [CrossRef]
- Kuhn, T.E.; Erban, C.; Heinrich, M.; Eisenlohr, J.; Ensslen, F.; Neuhaus, D.H. Review of technological design options for building integrated photovoltaics (BIPV). Energy Build. 2021, 231, 110381. [Google Scholar] [CrossRef]
- Maghrabie, H.M.; Abdelkareem, M.A.; Al-Alami, A.H.; Ramadan, M.; Mushtaha, E.; Wilberforce, T.; Olabi, A.G. State-of-the-art technologies for building-integrated photovoltaic systems. Buildings 2021, 11, 383. [Google Scholar] [CrossRef]
- Debije, M.G.; Verbunt, P.P.C. Thirty years of luminescent solar concentrator research: Solar energy for the built environment. Adv. Energy Mater. 2012, 2, 12–35. [Google Scholar] [CrossRef]
- Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072. [Google Scholar] [CrossRef]
- Roncali, J. Luminescent solar collectors: Quo vadis? Adv. Energy Mater. 2020, 10, 2001907. [Google Scholar] [CrossRef]
- Weber, W.H.; Lambe, J. Luminescent greenhouse collector for solar radiation. Appl. Opt. 1976, 15, 2299–2300. [Google Scholar] [CrossRef]
- Goetzberger, A.; Greube, W. Solar energy conversion with fluorescent collectors. Appl. Phys. 1977, 14, 123–139. [Google Scholar] [CrossRef]
- Batchelder, J.S.; Zewail, A.H.; Cole, T. Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation. Appl. Opt. 1979, 18, 3090–3110. [Google Scholar] [CrossRef]
- Batchelder, J.S.; Zewail, A.H.; Cole, T. Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies. Appl. Opt. 1981, 20, 3733–3754. [Google Scholar] [CrossRef] [Green Version]
- Reinders, A.; Kishore, R.; Slooff, L.; Eggink, W. Luminescent solar concentrator photovoltaic designs. Jpn. J. Appl. Phys. 2018, 57, 8RD10. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, Y.; Dong, R.; Luscombe, C.K. Review on the role of polymers in luminescent solar concentrators. J. Polym. Sci. A 2019, 57, 201–215. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, M.; Chandra, S.; Ahmed, H.; McCormack, S.J. An overview of various configurations of Luminescent Solar Concentrators for photovoltaic applications. Opt. Mater. 2019, 91, 212–227. [Google Scholar] [CrossRef]
- Corrado, C.; Leow, S.W.; Osborn, M.; Carbone, I.; Hellier, K.; Short, M.; Alers, G.; Carter, S.A. Power generation study of luminescent solar concentrator greenhouse. J. Renew. Sustain. Energy 2016, 8, 43502. [Google Scholar] [CrossRef] [Green Version]
- Sark, W.V.; Moraitis, P.; Aalberts, C.; Drent, M.; Grasso, T.; L’Ortije, Y.; Visschers, M.; Westra, M.; Plas, R.; Planje, W. The “electric Mondrian” as a luminescent solar concentrator demonstrator case study. Sol. RRL 2017, 1, 1600015. [Google Scholar] [CrossRef]
- Pujadas-Gispert, E.; Lenaers, W.J.H.P.; Schie, F.F.V.; Lazauskas, M.; Moonen, S.P.G.F. The gem tower: A hybrid renewable energy unit for festivals. Struct. Eng. Int. 2021, 31, 249–254. [Google Scholar] [CrossRef]
- Papakonstantinou, I.; Portnoi, M.; Debije, M.G. The hidden potential of luminescent solar concentrators. Adv. Energy Mater. 2021, 11, 2002883. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Ma, W.; Luo, Y.; Wang, L.; Hu, Z.; Wu, W.; Wang, X.; Zou, G.; Zhang, Q. Luminescent solar concentrator employing rare earth complex with zero self-absorption loss. Sol. Energy 2011, 85, 2571–2579. [Google Scholar] [CrossRef]
- Li, Y.; Olsen, J.; Nunez-Ortega, K.; Dong, W.-J. A structurally modified perylene dye for efficient luminescent solar concentrators. Sol. Energy 2016, 136, 668–674. [Google Scholar] [CrossRef]
- Wei, M.; Arquer, F.P.G.D.; Walters, G.; Yang, Z.; Quan, L.N.; Kim, Y.; Sabatini, R.; Quintero-Bermudez, R.; Gao, L.; Fan, J.Z.; et al. Ultrafast narrowband exciton routing within layered perovskite nanoplatelets enables low-loss luminescent solar concentrators. Nat. Energy 2019, 4, 197–205. [Google Scholar] [CrossRef]
- Sadeghi, S.; Melikov, R.; Jalali, H.B.; Karatum, O.; Srivastava, S.B.; Conkar, D.; Firat-Karalar, E.N.; Nizamoglu, S. Ecofriendly and efficient luminescent solar concentrators based on fluorescent proteins. ACS Appl. Mater. Interfaces 2019, 11, 8710–8716. [Google Scholar] [CrossRef]
- Neo, D.C.J.; Goh, W.P.; Lau, H.H.; Shanmugam, J.; Chen, Y.F. CuInS2 quantum dots with thick ZnSexS1-x shells for a luminescent solar concentrator. ACS Appl. Nano Mater. 2020, 3, 6489–6496. [Google Scholar] [CrossRef]
- Zdražil, L.; Kalytchuk, S.; Langer, M.; Ahmad, R.; Pospíšil, J.; Zmeškal, O.; Altomare, M.; Osvet, A.; Zbořil, R.; Schmuki, P.; et al. Transparent and low-loss luminescent solar concentrators based on self-trapped exciton emission in lead-free double perovskite nanocrystals. ACS Appl. Energy Mater. 2021, 4, 6445–6453. [Google Scholar] [CrossRef]
- Liu, Y.; Li, N.; Sun, R.; Zheng, W.; Liu, T.; Li, H.; Chen, Y.; Liu, G.; Zhao, H.; Liu, H.; et al. Stable metal-halide perovskites for luminescent solar concentrators of real-device integration. Nano Energy 2021, 85, 105960. [Google Scholar] [CrossRef]
- Mendewala, B.; Vickers, E.T.; Nikolaidou, K.; DiBenedetto, A.; Delmas, W.G.; Zhang, J.Z.; Ghosh, S. High efficiency luminescent solar concentrator based on organo-metal halide perovskite quantum dots with plasmon enhancement. Adv. Opt. Mater. 2021, 9, 2100754. [Google Scholar] [CrossRef]
- Moraitis, P.; Schropp, R.E.I.; Sark, W.G.J.H.M.V. Nanoparticles for luminescent solar concentrators—A review. Opt. Mater. 2018, 84, 636–645. [Google Scholar] [CrossRef]
- Zhang, C.; Kuang, D.-B.; Wu, W.-Q. A review of diverse halide perovskite morphologies for efficient optoelectronic applications. Small Methods 2020, 4, 1900662. [Google Scholar] [CrossRef]
- Ferro, S.M.; Wobben, M.; Ehrler, B. Rare-earth quantum cutting in metal halide perovskites—A review. Mater. Horiz. 2021, 8, 1072–1083. [Google Scholar] [CrossRef]
- Zhao, H.; Zhou, Y.; Benetti, D.; Ma, D.; Rosei, F. Perovskite quantum dots integrated in large-area luminescent solar concentrators. Nano Energy 2017, 37, 214–223. [Google Scholar] [CrossRef]
- Mendewala, B.; Nikolaidou, K.; Hoffman, C.; Sarang, S.; Lu, J.; Ilan, B.; Ghosh, S. The potential of scalability in high efficiency hybrid perovskite thin film luminescent solar concentrators. Sol. Energy 2019, 183, 392–397. [Google Scholar] [CrossRef]
- Ten Kate, O.M.; Hooning, K.M.; van der Kolk, E. Quantifying self-absorption losses in luminescent solar concentrators. Appl. Opt. 2014, 53, 5238–5245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Sun, Y.; Zhang, Y.; Li, Y.; Verduzco, R. High-performance hybrid luminescent-scattering solar concentrators based on a luminescent conjugated polymer. Polym. Int. 2021, 70, 475–482. [Google Scholar] [CrossRef]
- Wu, J.; Tong, J.; Gao, Y.; Wang, A.; Zhang, T.; Tan, H.; Nie, S.; Deng, Z. Efficient and stable thin-film luminescent solar concentrators enabled by near-infrared emission perovskite nanocrystals. Angew. Chem. Int. Ed. 2020, 59, 7738–7742. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Scudiero, L.; Ren, T.; Dong, W.-J. Synthesis and characterizations of benzothiadiazole-based fluorophores as potential wavelength-shifting materials. J. Photochem. Photobiol. A 2012, 231, 51–59. [Google Scholar] [CrossRef]
- Li, Y.; Ren, T.; Dong, W.-J. Tuning photophysical properties of triphenylamine and aromatic cyano conjugate-based wavelength-shifting compounds by manipulating intramolecular charge transfer strength. J. Photochem. Photobiol. A 2013, 251, 1–9. [Google Scholar] [CrossRef]
- Mateen, F.; Li, Y.; Saeed, M.A.; Sun, Y.; Zhang, Y.; Lee, S.Y.; Hong, S.-K. Large-area luminescent solar concentrator utilizing donor-acceptor luminophore with nearly zero reabsorption: Indoor/outdoor performance evaluation. J. Lumin. 2021, 231, 117837. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Wang, Y.; Compaan, A.; Ren, T.; Dong, W.-J. Increasing the power output of a CdTe solar cell via luminescent down shifting molecules with intramolecular charge transfer and aggregation-induced emission characteristics. Energy Environ. Sci. 2013, 6, 2907–2911. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Ablekim, T.; Ren, T.; Dong, W.J. Rational design of tetraphenylethylene-based luminescent down-shifting molecules: Photophysical studies and photovoltaic applications in a CdTe solar cell from small to large units. Phys. Chem. Chem. Phys. 2014, 16, 26193–26202. [Google Scholar] [CrossRef]
- Li, Y.; Olsen, J.; Dong, W.J. Enhancing the output current of a CdTe solar cell via a CN-free hydrocarbon luminescent down-shifting fluorophore with intramolecular energy transfer and restricted internal rotation characteristics. Photochem. Photobiol. Sci. 2015, 14, 833–841. [Google Scholar] [CrossRef]
- Breukers, R.D.; Smith, G.J.; Stirrat, H.L.; Swanson, A.J.; Smith, T.A.; Ghiggino, K.P.; Raymond, S.G.; Winch, N.M.; Clarke, D.J.; Kay, A.J. Light losses from scattering in luminescent solar concentrator waveguides. Appl. Opt. 2017, 56, 2630–2635. [Google Scholar] [CrossRef]
- Liu, H.; Li, S.; Chen, W.; Wang, D.; Li, C.; Wu, D.; Hao, J.; Zhou, Z.; Wang, X.; Wang, K. Scattering enhanced quantum dots based luminescent solar concentrators by silica microparticles. Sol. Energy Mater. Sol. Cells 2018, 179, 380–385. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhang, Y. Boosting the cost-effectiveness of luminescent solar concentrators through subwavelength sanding treatment. Sol. Energy 2020, 198, 151–159. [Google Scholar] [CrossRef]
- Mateen, F.; Lee, S.Y.; Hong, S.K. Luminescent solar concentrators based on thermally activated delayed fluorescence dyes. J. Mater. Chem. A 2020, 8, 3708–3716. [Google Scholar] [CrossRef]
- Brennan, L.J.; Purcell-Milton, F.; McKenna, B.; Watson, T.M.; Gun’Ko, Y.K.; Evans, R.C. Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells. J. Mater. Chem. A 2018, 6, 2671–2680. [Google Scholar] [CrossRef] [Green Version]
- Turrisi, R.; Sanguineti, A.; Sassi, M.; Savoie, B.; Takai, A.; Patriarca, G.E.; Salamone, M.M.; Ruffo, R.; Vaccaro, G.; Meinardi, F.; et al. Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators. J. Mater. Chem. A 2015, 3, 8045–8054. [Google Scholar] [CrossRef]
- Tong, J.; Luo, J.; Shi, L.; Wu, J.; Xu, L.; Song, J.; Wang, P.; Li, H.; Deng, Z. Fabrication of highly emissive and highly stable perovskite nanocrystal-polymer slabs for luminescent solar concentrators. J. Mater. Chem. A 2019, 7, 4872–4880. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Zhang, Y. Regional measurements to analyze large-area luminescent solar concentrators. Renew. Energy 2020, 160, 127–135. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Sun, Y.; Ren, T. Spectral response of large-area luminescent solar concentrators. Appl. Opt. 2020, 59, 8964–8969. [Google Scholar] [CrossRef]
- Şahin, D.; Ilan, B.; Kelley, D.F. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles. J. Appl. Phys. 2011, 110, 033108. [Google Scholar] [CrossRef] [Green Version]
- Leow, S.W.; Corrado, C.; Osborn, M.; Isaacson, M.; Alers, G.; Carter, S.A. Analyzing luminescent solar concentrators with front-facing photovoltaic cells using weighted Monte Carlo ray tracing. J. Appl. Phys. 2013, 113, 214510. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Zhang, X.; Wang, P.; Chen, R.; Zhang, H.; Li, D.; Zhang, P.; Xu, J. Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots. Phys. B Condens. Matter 2018, 548, 53–57. [Google Scholar] [CrossRef]
- Earp, A.A.; Franklin, J.B.; Smith, G.B. Absorption tails and extinction in luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 2011, 95, 1157–1162. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Zhang, Y.; Li, Y.; Li, Y. Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators. Electron. Mater. 2021, 2, 545-552. https://doi.org/10.3390/electronicmat2040039
Sun Y, Zhang Y, Li Y, Li Y. Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators. Electronic Materials. 2021; 2(4):545-552. https://doi.org/10.3390/electronicmat2040039
Chicago/Turabian StyleSun, Yujian, Yongcao Zhang, Yuxin Li, and Yilin Li. 2021. "Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators" Electronic Materials 2, no. 4: 545-552. https://doi.org/10.3390/electronicmat2040039
APA StyleSun, Y., Zhang, Y., Li, Y., & Li, Y. (2021). Self-Absorption Analysis of Perovskite-Based Luminescent Solar Concentrators. Electronic Materials, 2(4), 545-552. https://doi.org/10.3390/electronicmat2040039