Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
2.2.1. Electrochemical Impedance Spectroscopy (EIS)
2.2.2. Cyclic Voltammetry (CV) Test
2.2.3. Mechanical Testing (Young Modulus)
2.2.4. Long-Term Impedance Evaluation for the Bioelectrode Samples
2.2.5. Electrocardiograph (ECG) Test
3. Results
3.1. An Initial Evaluation of PANI-Silicone Electrodes Samples
3.2. Further Optimization for the PANI-Silicone Electrodes Samples
3.3. A Study for Long-Term Stability in Phosphate-Buffered Saline (PBS) Solutions
3.4. Evaluation of the Degree of Confidence
3.5. ECG Test Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cogan, S.F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309. [Google Scholar] [CrossRef] [Green Version]
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science: An Introduction to Materials in Medicine; Academic Press (Elsevier): Cambridge, MA, USA, 2004. [Google Scholar]
- Muthukumar, N.; Thilagavathi, G.; Kannaian, T. Polyaniline-coated foam electrodes for electroencephalography (EEG) measurement. J. Text. Instig. 2016, 107, 283–290. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, J.; Yao, Y.; Zhang, L.; Wen, Y.; Song, H.; Zhu, D. Facile preparation of highly water-stable and flexible PEDOT:PSS organic/inorganic composite materials and their application in electrochemical sensors. Sens. Actuators B Chem. 2014, 196, 357–369. [Google Scholar] [CrossRef]
- Mohamed, O.; Al-Othman, A.; Al-Nashash, H.; Tawalbeh, M.; Almomani, F.; Rezakazemi, M. Fabrication of titanium dioxide nanomaterial for implantable highly flexible composite bioelectrode for biosensing applications. Chemosphere 2021, 273, 129680. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.C.; Renaud, P.; Tanila, H.; Djupsund, K. Flexible polyimide microelectrode array for in vivo recordings and current source density analysis. Biosens. Bioelectron. 2007, 22, 1783–1790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Othman, A.; Alatoom, A.; Farooq, A.; Al-Sayah, M.; Al-Nashash, H. Novel flexible implantable electrodes based on conductive polymers and Titanium dioxide. In Proceedings of the Middle East Conference on Biomedical Engineering, MECBME, Tunis, Tunisia, 28–30 March 2018. [Google Scholar] [CrossRef]
- Almufleh, N.L.; Al-Othman, A.; Al-Nashash, H.; Al-Sayah, M.H. Implantable Electrodes Based on Poly-aniline (PANI) and Silicone for Neural Sensing/Stimulations. In Proceedings of the Middle East Conference on Biomedical Engineering, MECBME, Amman, Jordan, 27–29 October 2020. [Google Scholar] [CrossRef]
- Alatoom, A.; Al-Othman, A.; Al-Nashash, H.; Al-Sayah, M. Development and Characterization of Novel Composite and Flexible Electrode Based on Titanium Dioxide. IEEE Trans. Components Packag. Manuf. Technol. 2020, 10, 1079–1087. [Google Scholar] [CrossRef]
- Shahadat, M.; Khan, M.Z.; Rupani, P.F.; Embrandiri, A.; Sultana, S.; Ahammad, S.Z.; Wazed Ali, S.; Sreekrishnan, T.R. A critical review on the prospect of polyaniline-grafted biodegradable nanocomposite. Adv. Colloid Interface Sci. 2017, 249, 2–16. [Google Scholar] [CrossRef]
- Lim, H.; Hoag, S.W. Plasticizer effects on physical-mechanical properties of solvent cast Soluplus® films. AAPS PharmSciTech 2013, 14, 903–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Xia, Y.; Du, D.; Ouyang, J. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 11629–11638. [Google Scholar] [CrossRef]
- McAdams, E.T.; Jossinet, J.; Subramanian, R.; McCauley, R.G.E. Characterization of gold electrodes in phosphate buffered saline solution by impedance and noise measurements for biological applications. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA , 30 August–3 September 2006; pp. 4594–4597. [Google Scholar] [CrossRef]
- Bauerdick, S.; Burkhardt, C.; Kern, D.P.; Nisch, W. Substrate-integrated microelectrodes with improved charge transfer capacity by 30-dimensional micro-fabrication. Biomed. Microdevices 2003, 5, 93–99. [Google Scholar] [CrossRef]
- Etemadi, L.; Mohammed, M.; Thorbergsson, P.T.; Ekstrand, J.; Friberg, A.; Granmo, M.; Pettersson, L.M.E.; Schouenborg, J. Embedded ultrathin cluster electrodes for long-term recordings in deep brain centers. PLoS ONE 2016, 11, e0155109. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, Y.; Pan, J.; Wei, P.; Liu, N.; Wu, B.; Cheng, J.; Lu, C.; Wang, L. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics. Biomaterials 2012, 33, 378–394. [Google Scholar] [CrossRef]
- Cruz, A.M.; Casañ-Pastor, N. Graded conducting titanium-iridium oxide coatings for bioelectrodes in neural systems. Thin Solid Films 2013, 534, 316–324. [Google Scholar] [CrossRef]
- Harris, A.R.; Morgan, S.J.; Chen, J.; Kapsa, R.M.I.; Wallace, G.G.; Paolini, A.G. Conducting polymer coated neural recording electrodes. J. Neural Eng. 2013, 10, 016004. [Google Scholar] [CrossRef]
- Adpakpang, K.; Jin, X.; Lee, S.; Oh, S.M.; Lee, N.S.; Hwang, S.J. Unusually Huge Charge Storage Capacity of Mn3O4-Graphene Nanocomposite Achieved by Incorporation of Inorganic Nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 13360–13372. [Google Scholar] [CrossRef]
- Jeon, J.W.; O’Neal, J.; Shao, L.; Lutkenhaus, J.L. Charge storage in polymer acid-doped polyaniline-based layer-by-layer electrodes. ACS Appl. Mater. Interfaces 2013, 5, 10127–10136. [Google Scholar] [CrossRef]
- Kalra, A.; Lowe, A.; Al-Jumaily, A.M. Mechanical Behaviour of Skin: A Review. J. Mater. Sci. Eng. 2016, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Hashim, A.; Abbas, B. Recent Review on Poly-methyl methacrylate (PMMA)-Polystyrene (PS) Blend Doped with Nanoparticles For Modern Applications. Res. J. Agric. Biol. Sci. 2019, 14, 6–12. [Google Scholar] [CrossRef]
- Pani, D.; Achilli, A.; Bonfiglio, A. Survey on Textile Electrode Technologies for Electrocardiographic (ECG) Monitoring, from Metal Wires to Polymers. Adv. Mater. Technol. 2018, 3, 10. [Google Scholar] [CrossRef]
- Yusoff, I.I.; Rohani, R.; Ng, L.Y.; Mohammad, A.W. Conductive polyelectrolyte multilayers PANI membranes synthesis for tunable filtration ranges. J. Mater. Sci. 2019, 54, 12988–13005. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Hsu, C.; Venkatesan, M.; Tseng, Y.-L.; Cho, C.-J.; Han, S.-T.; Zhou, Y.; Chiang, W.-H.; Kuo, C.-C. Enhanced electrical and thermal properties of semi-conductive PANI-CNCs with surface modified CNCs. RSC Adv. 2021, 11, 11444–11456. [Google Scholar] [CrossRef]
- Ghazavi, A.; Maeng, J.; Black, M.; Salvi, S.; Cogan, S.F. Electrochemical characteristics of ultramicro-dimensioned SIROF electrodes for neural stimulation and recording. J. Neural Eng. 2020, 17, 016022. [Google Scholar] [CrossRef] [PubMed]
- Carli, S.; Bianchi, M.; Zucchini, E.; Di Lauro, M.; Prato, M.; Murgia, M.; Fadiga, L.; Biscarini, F. Electrodeposited PEDOT:Nafion Composite for Neural Recording and Stimulation. Adv. Healthc. Mater. 2019, 8, e1900765. [Google Scholar] [CrossRef] [PubMed]
Sample | PANI (%) | Silicone (%) | Glycerol (%) |
---|---|---|---|
Sample 1 | 0.9 g (30%) | 1.5 g (50%) | 0.6 g (20%) |
Sample 2 | 0.6 g (20%) | 1.5 g (50%) | 0.9 g (30%) |
Sample 3 | 0.3 g (10%) | 1.8 g (60%) | 0.9 g (30%) |
Sample | PANI (%) | Silicone (%) | Glycerol (%) | Bulk Impedance (kΩ) | Impedance at 1 kHz (kΩ) | Conductivity (S/cm) |
---|---|---|---|---|---|---|
Sample 1 | 30 | 50 | 20 | 4 | 28.4 | 8.33 × 10−8 |
Sample 2 | 20 | 50 | 30 | 5.3 | 8.74 | 6.28 × 10−8 |
Sample 3 | 10 | 60 | 30 | 50.1 | 971 | 6.65 × 10−9 |
PANI-Coated Foam Electrodes | - | - | - | 7 | 1.45 × 103 [3] | - |
PEDOT: PSS | - | - | - | 2.23 | 2.54 [4] | 0.26 [4] |
Composite | PANI (%) | Silicone (%) | Glycerol (%) | Charge Capacity (C/cm2) | Reference |
---|---|---|---|---|---|
Sample 1 | 30 | 50 | 20 | 4.3124 | This work |
Sample 2 | 20 | 50 | 30 | 14.4945 | This work |
Sample 3 | 10 | 60 | 30 | 0.2575 | This work |
Graphene | - | - | - | 1.42 × 10−9 | [19] |
Polyaniline | - | - | - | 0.02 | [20] |
Sample | PANI (%) | Silicone (%) | Glycerol (%) | Bulk Impedance (kΩ) | Impedance at 1 kHz | Conductivity (S/cm) |
---|---|---|---|---|---|---|
4 | 15 | 70 | 15 | 0.025 | 79.1396 Ω | 1.33 × 10−5 |
5 | 20 | 50 | 30 | 0.022 | 56.5978 Ω | 1.51 × 10−5 |
6 | 6 | 72 | 22 | 0.600 | 1.6 kΩ | 5.55 × 10−7 |
PANI-coated foam electrode | - | - | - | 7.00 | 1.45 MΩ [3] | - |
Week | Charge Storage Capacity (C/cm2) |
---|---|
1 | 0.67 |
2 | 2.92 |
3 | 0.097 |
4 | 9.13 |
5 | 0.997 |
6 | 2.25 |
7 | 0.923 |
8 | 2.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almufleh, N.; Al-Othman, A.; Alani, Z.; Al-Sayah, M.H.; Al-Nashash, H. Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications. Electron. Mater. 2021, 2, 413-427. https://doi.org/10.3390/electronicmat2030028
Almufleh N, Al-Othman A, Alani Z, Al-Sayah MH, Al-Nashash H. Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications. Electronic Materials. 2021; 2(3):413-427. https://doi.org/10.3390/electronicmat2030028
Chicago/Turabian StyleAlmufleh, Nader, Amani Al-Othman, Zaid Alani, Mohammad H. Al-Sayah, and Hasan Al-Nashash. 2021. "Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications" Electronic Materials 2, no. 3: 413-427. https://doi.org/10.3390/electronicmat2030028
APA StyleAlmufleh, N., Al-Othman, A., Alani, Z., Al-Sayah, M. H., & Al-Nashash, H. (2021). Highly Flexible Polyaniline-Based Implantable Electrode Materials for Neural Sensing/Stimulation Applications. Electronic Materials, 2(3), 413-427. https://doi.org/10.3390/electronicmat2030028