Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia
Abstract
:1. Introduction
2. Clinical Features
3. Radiological Findings
4. Biochemical Findings
5. Genetic Findings
6. Treatment
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laurent, M.R.; De Schepper, J.; Trouet, D.; Godefroid, N.; Boros, E.; Heinrichs, C.; Bravenboer, B.; Velkeniers, B.; Lammens, J.; Harvengt, P.; et al. Consensus Recommendations for the Diagnosis and Management of X-Linked Hypophosphatemia in Belgium. Front. Endocrinol. 2021, 12, 641543. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Imel, E.A.; Holm, I.A.; Jan de Beur, S.M.; Insogna, K.L. A clinician’s guide to X-linked hypophosphatemia. J. Bone Miner. Res. 2011, 26, 1381–1388. [Google Scholar] [CrossRef] [Green Version]
- Rafaelsen, S.; Johansson, S.; Raeder, H.; Bjerknes, R. Hereditary hypophosphatemia in Norway: A retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur. J. Endocrinol. 2016, 174, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Endo, I.; Fukumoto, S.; Ozono, K.; Namba, N.; Inoue, D.; Okazaki, R.; Yamauchi, M.; Sugimoto, T.; Minagawa, M.; Michigami, T.; et al. Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: Prevalence, biochemical data and treatment. Endocr. J. 2015, 62, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, T.O. New perspectives on the biology and treatment of X-linked hypophosphatemic rickets. Pediatr. Clin. N. Am. 1997, 44, 443–466. [Google Scholar] [CrossRef]
- Baroncelli, G.I.; Mora, S. X-Linked Hypophosphatemic Rickets: Multisystemic Disorder in Children Requiring Multidisciplinary Management. Front. Endocrinol. 2021, 12, 688309. [Google Scholar] [CrossRef]
- Al Juraibah, F.; Al Amiri, E.; Al Dubayee, M.; Al Jubeh, J.; Al Kandari, H.; Al Sagheir, A.; Al Shaikh, A.; Beshyah, S.A.; Deeb, A.; Habeb, A.; et al. Diagnosis and management of X-linked hypophosphatemia in children and adolescent in the Gulf Cooperation Council countries. Arch. Osteoporos. 2021, 16, 52. [Google Scholar] [CrossRef]
- Acar, S.; Demir, K.; Shi, Y. Genetic Causes of Rickets. J. Clin. Res. Pediatr. Endocrinol. 2017, 9 (Suppl. 2), 88–105. [Google Scholar] [CrossRef]
- Emma, F.; Cappa, M.; Antoniazzi, F.; Bianchi, M.L.; Chiodini, I.; Eller Vainicher, C.; Di Iorgi, N.; Maghnie, M.; Cassio, A.; Balsamo, A.; et al. X-linked hypophosphatemic rickets: An Italian experts’ opinion survey. Ital. J. Pediatr. 2019, 45, 67. [Google Scholar] [CrossRef] [Green Version]
- Beck-Nielsen, S.S.; Brusgaard, K.; Rasmussen, L.M.; Brixen, K.; Brock-Jacobsen, B.; Poulsen, M.R.; Vestergaard, P.; Ralston, S.H.; Albagha, O.M.; Poulsen, S.; et al. Phenotype presentation of hypophosphatemic rickets in adults. Calcif. Tissue Int. 2010, 87, 108–119. [Google Scholar] [CrossRef]
- Baroncelli, G.I.; Bertelloni, S.; Ceccarelli, C.; Saggese, G. Effect of growth hormone treatment on final height, phosphate metabolism, and bone mineral density in children with X-linked hypophosphatemic rickets. J. Pediatr. 2001, 138, 236–243. [Google Scholar] [CrossRef]
- Miyamoto, J.; Koto, S.; Hasegawa, Y. Final height of Japanese patients with X-linked hypophosphatemic rickets: Effect of vitamin D and phosphate therapy. Endocr. J. 2000, 47, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Padidela, R.; Nilsson, O.; Makitie, O.; Beck-Nielsen, S.; Ariceta, G.; Schnabel, D.; Brandi, M.L.; Boot, A.; Levtchenko, E.; Smyth, M.; et al. The international X-linked hypophosphataemia (XLH) registry (NCT03193476): Rationale for and description of an international, observational study. Orphanet J. Rare Dis. 2020, 15, 172. [Google Scholar] [CrossRef]
- Che, H.; Roux, C.; Etcheto, A.; Rothenbuhler, A.; Kamenicky, P.; Linglart, A.; Briot, K. Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur. J. Endocrinol. 2016, 174, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Skrinar, A.; Dvorak-Ewell, M.; Evins, A.; Macica, C.; Linglart, A.; Imel, E.A.; Theodore-Oklota, C.; San Martin, J. The Lifelong Impact of X-Linked Hypophosphatemia: Results From a Burden of Disease Survey. J. Endocr. Soc. 2019, 3, 1321–1334. [Google Scholar] [CrossRef] [Green Version]
- Živičnjak, M.; Schnabel, D.; Staude, H.; Even, G.; Marx, M.; Beetz, R.; Holder, M.; Billing, H.; Fischer, D.C.; Rabl, W.; et al. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: Effects on linear growth and body disproportion. J. Clin. Endocrinol. Metab. 2011, 96, E2097–E2105. [Google Scholar] [CrossRef]
- Makitie, O.; Doria, A.; Kooh, S.W.; Cole, W.G.; Daneman, A.; Sochett, E. Early treatment improves growth and biochemical and radiographic outcome in X-linked hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 2003, 88, 3591–3597. [Google Scholar] [CrossRef] [Green Version]
- Biosse Duplan, M.; Coyac, B.R.; Bardet, C.; Zadikian, C.; Rothenbuhler, A.; Kamenicky, P.; Briot, K.; Linglart, A.; Chaussain, C. Phosphate and Vitamin D Prevent Periodontitis in X-Linked Hypophosphatemia. J. Dent. Res. 2017, 96, 388–395. [Google Scholar] [CrossRef]
- Quinlan, C.; Guegan, K.; Offiah, A.; Neill, R.O.; Hiorns, M.P.; Ellard, S.; Bockenhauer, D.; Hoff, W.V.T.; Waters, A.M. Growth in PHEX-associated X-linked hypophosphatemic rickets: The importance of early treatment. Pediatr. Nephrol. 2012, 27, 581–588. [Google Scholar] [CrossRef]
- Insogna, K.L.; Briot, K.; Imel, E.A.; Kamenický, P.; Ruppe, M.D.; Portale, A.A.; Weber, T.; Pitukcheewanont, P.; Cheong, H.I.; Jan de Beur, S.; et al. A Randomized, Double-Blind, Placebo-Controlled, Phase 3 Trial Evaluating the Efficacy of Burosumab, an Anti-FGF23 Antibody, in Adults With X-Linked Hypophosphatemia: Week 24 Primary Analysis. J. Bone Miner. Res. 2018, 33, 1383–1393. [Google Scholar] [CrossRef] [Green Version]
- Padidela, R.; Whyte, M.P.; Glorieux, F.H.; Munns, C.F.; Ward, L.M.; Nilsson, O.; Portale, A.A.; Simmons, J.H.; Namba, N.; Cheong, H.I.; et al. Patient-Reported Outcomes from a Randomized, Active-Controlled, Open-Label, Phase 3 Trial of Burosumab Versus Conventional Therapy in Children with X-Linked Hypophosphatemia. Calcif. Tissue Int. 2021, 108, 622–633. [Google Scholar] [CrossRef]
- Rothenbuhler, A.; Schnabel, D.; Hogler, W.; Linglart, A. Diagnosis, treatment-monitoring and follow-up of children and adolescents with X-linked hypophosphatemia (XLH). Metabolism 2020, 103, 153892. [Google Scholar] [CrossRef]
- Haffner, D.; Emma, F.; Eastwood, D.M.; Duplan, M.B.; Bacchetta, J.; Schnabel, D.; Wicart, P.; Bockenhauer, D.; Santos, F.; Levtchenko, E.; et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat. Rev. Nephrol. 2019, 15, 435–455. [Google Scholar] [CrossRef] [Green Version]
- Lambert, A.S.; Zhukouskaya, V.; Rothenbuhler, A.; Linglart, A. X-linked hypophosphatemia: Management and treatment prospects. Jt. Bone Spine 2019, 86, 731–738. [Google Scholar] [CrossRef]
- Vega, R.A.; Opalak, C.; Harshbarger, R.J.; Fearon, J.A.; Ritter, A.M.; Collins, J.J.; Rhodes, J.L. Hypophosphatemic rickets and craniosynostosis: A multicenter case series. J. Neurosurg. Pediatr. 2016, 17, 694–700. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Fuente, R.; Mejia, N.; Mantecon, L.; Gil-Pena, H.; Ordonez, F.A. Hypophosphatemia and growth. Pediatr. Nephrol. 2013, 28, 595–603. [Google Scholar] [CrossRef]
- Živičnjak, M.; Schnabel, D.; Billing, H.; Staude, H.; Filler, G.; Querfeld, U.; Schumacher, M.; Pyper, A.; Schröder, C.; Brämswig, J.; et al. Age-related stature and linear body segments in children with X-linked hypophosphatemic rickets. Pediatr. Nephrol. 2011, 26, 223–231. [Google Scholar] [CrossRef]
- Veilleux, L.N.; Cheung, M.S.; Glorieux, F.H.; Rauch, F. The muscle-bone relationship in X-linked hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 2013, 98, E990–E995. [Google Scholar] [CrossRef] [Green Version]
- Van Waes, H.; Luder, H.U. Hypophosphatemic rickets. Hereditary disorder of metabolism and dentin dysplasia. Schweiz Mon. Zahnmed. 2013, 123, 410–411. [Google Scholar]
- Ito, N.; Kang, H.G.; Nishida, Y.; Evins, A.; Skrinar, A.; Cheong, H.I. Burden of disease of X-linked hypophosphatemia in Japanese and Korean patients: A cross-sectional survey. Endocr. J. 2022, 69, 373–383. [Google Scholar] [CrossRef]
- Rothenbuhler, A.; Fadel, N.; Debza, Y.; Bacchetta, J.; Diallo, M.T.; Adamsbaum, C.; Linglart, A.; Di Rocco, F. High Incidence of Cranial Synostosis and Chiari I Malformation in Children With X-Linked Hypophosphatemic Rickets (XLHR). J. Bone Miner. Res. 2019, 34, 490–496. [Google Scholar] [CrossRef] [Green Version]
- Martel-Villagran, J.; Arias-Medina, A.; Garcia-Mardones, G. Usefulness of X-rays in the Differential Diagnosis of Hypophosphataemic Rickets. Adv. Ther. 2020, 37 (Suppl. 2), 89–94. [Google Scholar] [CrossRef]
- Adamsbaum, C.; Laredo, J.D.; Briot, K.; Linglart, A. Contribution of imaging to the diagnosis and follow up of X-linked hypophosphatemia. Arch. Pediatr. 2021, 28, 594–598. [Google Scholar] [CrossRef]
- Thacher, T.D.; Fischer, P.R.; Pettifor, J.M.; Lawson, J.O.; Manaster, B.J.; Reading, J.C. Radiographic scoring method for the assessment of the severity of nutritional rickets. J. Trop. Pediatr. 2000, 46, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Thacher, T.D.; Pettifor, J.M.; Tebben, P.J.; Creo, A.L.; Skrinar, A.; Mao, M.; Chen, C.Y.; Chang, T.; San Martin, J.; Carpenter, T.O. Rickets severity predicts clinical outcomes in children with X-linked hypophosphatemia: Utility of the radiographic Rickets Severity Score. Bone 2019, 122, 76–81. [Google Scholar] [CrossRef]
- Lim, R.; Shailam, R.; Hulett, R.; Skrinar, A.; Nixon, A.; Williams, A.; Nixon, M.; Thacher, T.D. Validation of the Radiographic Global Impression of Change (RGI-C) score to assess healing of rickets in pediatric X-linked hypophosphatemia (XLH). Bone 2021, 148, 115964. [Google Scholar] [CrossRef]
- Shore, R.M.; Chesney, R.W. Rickets: Part II. Pediatr. Radiol. 2013, 43, 152–172. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Shaw, N.J.; Portale, A.A.; Ward, L.M.; Abrams, S.A.; Pettifor, J.M. Rickets. Nat. Rev. Dis. Prim. 2017, 3, 17101. [Google Scholar] [CrossRef]
- Tan, J.G.; Vasanwala, R.F.; Yap, F.; Lek, N.; Ho, C.K.M. What are the appropriate reference limits for the diagnosis of hypophosphataemia in paediatric patients? J. Clin. Pathol. 2019, 72, 569–572. [Google Scholar] [CrossRef]
- Asgari, S.; Higgins, V.; McCudden, C.; Adeli, K. Continuous reference intervals for 38 biochemical markers in healthy children and adolescents: Comparisons to traditionally partitioned reference intervals. Clin. Biochem. 2019, 73, 82–89. [Google Scholar] [CrossRef]
- Dubourg, L.D.; Aurelle, M.; Chardon, L.; Flammier, S.; Lemoine, S.; Bacchetta, J. TmP/GFR reference values from childhood to adulthood in the era of IDMS-standardized creatinine values. Nephrol. Dial. Transplant 2021, 37, 2150–2156. [Google Scholar] [CrossRef]
- Alon, U.; Hellerstein, S. Assessment and interpretation of the tubular threshold for phosphate in infants and children. Pediatr. Nephrol. 1994, 8, 250–251. [Google Scholar] [CrossRef]
- Kubota, T.; Kitaoka, T.; Miura, K.; Fujiwara, M.; Ohata, Y.; Miyoshi, Y.; Yamamoto, K.; Takeyari, S.; Yamamoto, T.; Namba, N.; et al. Serum fibroblast growth factor 23 is a useful marker to distinguish vitamin D-deficient rickets from hypophosphatemic rickets. Horm. Res. Paediatr. 2014, 81, 251–257. [Google Scholar] [CrossRef]
- Fukumoto, S. FGF23-related hypophosphatemic rickets/osteomalacia: Diagnosis and new treatment. J. Mol. Endocrinol. 2021, 66, R57–R65. [Google Scholar] [CrossRef]
- Igaki, J.M.; Yamada, M.; Yamazaki, Y.; Koto, S.; Izawa, M.; Ariyasu, D.; Suzuki, E.; Hasegawa, H.; Hasegawa, Y. High iFGF23 level despite hypophosphatemia is one of the clinical indicators to make diagnosis of XLH. Endocr. J. 2011, 58, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Lorenz-Depiereux, B.; Schnabel, D.; Tiosano, D.; Häusler, G.; Strom, T.M. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am. J. Hum. Genet. 2010, 86, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Chunn, L.M.; Bissonnette, J.; Heinrich, S.V.; Mercurio, S.A.; Kiel, M.J.; Rutsch, F.; Ferreira, C.R. Estimation of ENPP1 deficiency genetic prevalence using a comprehensive literature review and population databases. Orphanet J. Rare Dis. 2022, 17, 421. [Google Scholar] [CrossRef]
- Ma, X.; Pang, Q.; Zhang, Q.; Jiang, Y.; Wang, O.; Li, M.; Xing, X.; Xia, W. A Novel Synonymous Variant of PHEX in a Patient with X-Linked Hypophosphatemia. Calcif. Tissue Int. 2022, 111, 634–640. [Google Scholar] [CrossRef]
- Xu, T.; Tao, X.; Zhang, Z.; Yue, H. Clinical and genetic characteristics of 29 Chinese patients with X-linked hypophosphatemia. Front. Endocrinol. 2022, 13, 956646. [Google Scholar] [CrossRef]
- Dahir, K.M.; Black, M.; Gottesman, G.S.; Imel, E.A.; Mumm, S.; Nichols, C.M.; Whyte, M.P. X-Linked Hypophosphatemia Caused by the Prevailing North American PHEX Variant c.* 231A> G.; Exon 13–15 Duplication Is Often Misdiagnosed as Ankylosing Spondylitis and Manifests in Both Men and Women. JBMR Plus 2022, 6, e10692. [Google Scholar] [CrossRef]
- Jimenez, M.; Ivanovic-Zuvic, D.; Loureiro, C.; Carvajal, C.A.; Cavada, G.; Schneider, P.; Gallardo, E.; García, C.; Gonzalez, G.; Contreras, O.; et al. Clinical and molecular characterization of Chilean patients with X-linked hypophosphatemia. Osteoporos. Int. 2021, 32, 1825–1836. [Google Scholar] [CrossRef]
- Gaucher, C.; Walrant-Debray, O.; Nguyen, T.M.; Esterle, L.; Garabédian, M.; Jehan, F. PHEX analysis in 118 pedigrees reveals new genetic clues in hypophosphatemic rickets. Hum. Genet. 2009, 125, 401–411. [Google Scholar] [CrossRef]
- Beck-Nielsen, S.S.; Brixen, K.; Gram, J.; Brusgaard, K. Mutational analysis of PHEX, FGF23, DMP1, SLC34A3 and CLCN5 in patients with hypophosphatemic rickets. J. Hum. Genet. 2012, 57, 453–458. [Google Scholar] [CrossRef]
- Park, P.G.; Lim, S.H.; Lee, H.; Ahn, Y.H.; Cheong, H.I.; Kang, H.G. Genotype and Phenotype Analysis in X-Linked Hypophosphatemia. Front. Pediatr. 2021, 9, 699767. [Google Scholar] [CrossRef]
- Morey, M.; Castro-Feijóo, L.; Barreiro, J.; Cabanas, P.; Pombo, M.; Gil, M.; Bernabeu, I.; Díaz-Grande, J.M.; Rey-Cordo, L.; Ariceta, G.; et al. Genetic diagnosis of X-linked dominant Hypophosphatemic Rickets in a cohort study: Tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med. Genet. 2011, 12, 116. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Wang, C.; Chen, Q.; Che, R.; Sha, Y.; Zhao, F.; Ding, G.; Zhou, W.; Jia, Z.; Huang, S.; et al. Functional Characterization of PHEX Gene Variants in Children With X-Linked Hypophosphatemic Rickets Shows No Evidence of Genotype-Phenotype Correlation. J. Bone Miner. Res. 2020, 35, 1718–1725. [Google Scholar] [CrossRef]
- Mindler, G.T.; Stauffer, A.; Kranzl, A.; Penzkofer, S.; Ganger, R.; Radler, C.; Haeusler, G.; Raimann, A. Persistent Lower Limb Deformities Despite Amelioration of Rickets in X-Linked Hypophosphatemia (XLH)—A Prospective Observational Study. Front. Endocrinol. 2022, 13, 866170. [Google Scholar] [CrossRef]
- Kato, H.; Okawa, R.; Ogasawara, T.; Hoshino, Y.; Hidaka, N.; Koga, M.; Kinoshita, Y.; Kobayashi, H.; Taniguchi, Y.; Fukumoto, S.; et al. Effect of conventional treatment on dental complications and ectopic ossifications among 30 adults with XLH. J. Clin. Endocrinol. Metab. 2022. [Google Scholar] [CrossRef]
- Haffner, D.; Nissel, R.; Wühl, E.; Mehls, O. Effects of growth hormone treatment on body proportions and final height among small children with X-linked hypophosphatemic rickets. Pediatrics 2004, 113, e593–e596. [Google Scholar] [CrossRef] [Green Version]
- Rothenbuhler, A.; Esterle, L.; Gueorguieva, I.; Salles, J.P.; Mignot, B.; Colle, M.; Linglart, A. Two-year recombinant human growth hormone (rhGH) treatment is more effective in pre-pubertal compared to pubertal short children with X-linked hypophosphatemic rickets (XLHR). Growth Horm. IGF Res. 2017, 36, 11–15. [Google Scholar] [CrossRef]
- Imel, E.A.; Glorieux, F.H.; Whyte, M.P.; Munns, C.F.; Ward, L.M.; Nilsson, O.; Simmons, J.H.; Padidela, R.; Namba, N.; Cheong, H.I.; et al. Burosumab versus conventional therapy in children with X-linked hypophosphataemia: A randomised, active-controlled, open-label, phase 3 trial. Lancet 2019, 393, 2416–2427. [Google Scholar] [CrossRef]
- Whyte, M.P.; Carpenter, T.O.; Gottesman, G.S.; Mao, M.; Skrinar, A.; San Martin, J.; Imel, E.A. Efficacy and safety of burosumab in children aged 1–4 years with X-linked hypophosphataemia: A multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019, 7, 189–199. [Google Scholar] [CrossRef]
- Carpenter, T.O.; Whyte, M.P.; Imel, E.A.; Boot, A.M.; Högler, W.; Linglart, A.; Padidela, R.; van’t Hoff, W.; Mao, M.; Chen, C.Y.; et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N. Engl. J. Med. 2018, 378, 1987–1998. [Google Scholar] [CrossRef] [Green Version]
- Insogna, K.L.; Rauch, F.; Kamenický, P.; Ito, N.; Kubota, T.; Nakamura, A.; Zhang, L.; Mealiffe, M.; San Martin, J.; Portale, A.A. Burosumab Improved Histomorphometric Measures of Osteomalacia in Adults with X-Linked Hypophosphatemia: A Phase 3, Single-Arm, International Trial. J. Bone Miner. Res. 2019, 34, 2183–2191. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, T.O.; Imel, E.A.; Ruppe, M.D.; Weber, T.J.; Klausner, M.A.; Wooddell, M.M.; Kawakami, T.; Ito, T.; Zhang, X.; Humphrey, J.; et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J. Clin. Investig. 2014, 124, 1587–1597. [Google Scholar] [CrossRef] [Green Version]
Age | Clinical Features | Haffner, 2019 [23] | Lambert, 2019 [24] | Rothenbuhler, 2020 [22] | Juraibah, 2021 [7] | Laurent, 2021 [1] | Baroncelli, 2021 [6] |
---|---|---|---|---|---|---|---|
From age 6 months to 1 year | Lower leg deformities | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ |
Craniosynostosis | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 | |
Growth impairment † | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ¶ | 〇 ‡ | |
From age 1 year to 2 years | Waddling gait | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ |
Progressive lower limb deformities | 〇 | 〇 § | ND | ND | ND | 〇 ‡ | |
Delayed gross motor development | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | ND | 〇 ‡ | |
Delayed standing | ND | ND | 〇 ‡ | ND | ND | ND | |
Delayed walking | 〇 | 〇 ‡ | 〇 ‡ | ND | ND | 〇 ‡ | |
Torsional components | 〇 | ND | ND | 〇 ‡ | ND | ND | |
Widening of the distal metaphysis at the wrists and ankles | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | ND | 〇 ‡ | |
Age 3 years or older | Dental abscess | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 ‡ |
Dental malposition | ND | ND | ND | ND | ND | 〇 ‡ | |
Older children | Bone pain | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇 | 〇 ‡ |
Hearing loss | 〇 | 〇 ‡ | 〇 ‡ | 〇 ‡ | 〇‡ | 〇 |
Evaluation Site | Grade or Multiplier | Radiographic Features |
---|---|---|
Radius and ulna b | Grade | |
0 | Normal | |
1 | Widened growth plate, irregularity of metaphyseal margins, no concave cupping | |
2 | Metaphyseal concavity with fraying of margins | |
Femur and tibia b | Grade | |
0 | Normal | |
1 | Partial lucency, smooth metaphyseal margin visible | |
2 | Partial lucency, smooth metaphyseal margin not visible | |
3 | Complete lucency, epiphysis appears widely separated from distal metaphysis | |
Multiplier | ||
0.5 | ≤1 condyle or plateau | |
1 | 2 condyles or plateaus |
Radiologic Findings | Biochemical Findings | Genetic Findings |
---|---|---|
Widening of the metaphysis Cupping of the metaphysis Fraying of the metaphysis Enlarged metaphysis Long bone deformities Bone-within-a-bone | Blood test Decreased P Increased ALP Normal or increased PTH Low or normal 1,25(OH)2D Increased FGF23 | Sanger sequencing MLPA |
Next-generation sequencing Deletion Missense variant Nonsense variant Splicing variant Frameshift variant | ||
Urine test Low TmP/GFR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikegawa, K.; Hasegawa, Y. Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia. Endocrines 2023, 4, 128-137. https://doi.org/10.3390/endocrines4010012
Ikegawa K, Hasegawa Y. Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia. Endocrines. 2023; 4(1):128-137. https://doi.org/10.3390/endocrines4010012
Chicago/Turabian StyleIkegawa, Kento, and Yukihiro Hasegawa. 2023. "Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia" Endocrines 4, no. 1: 128-137. https://doi.org/10.3390/endocrines4010012
APA StyleIkegawa, K., & Hasegawa, Y. (2023). Presentation and Diagnosis of Pediatric X-Linked Hypophosphatemia. Endocrines, 4(1), 128-137. https://doi.org/10.3390/endocrines4010012