Advancements in Thyroidectomy: A Mini Review
Abstract
:1. Introduction
2. From Endoscopic Approaches to Robotic Surgery
2.1. Trans-Axillary Approach
2.2. Bilateral Axillo-Breast Approach (BABA)
2.3. Natural Orifice Surgery
3. Neuromonitoring
3.1. Prototype of Intra-Operative Neuromonitoring System (IONM)
3.2. Commonly Used Devices
3.3. Usefulness of Intra-Operative Neuromonitoring
4. Vessel Sealing Devices
5. Preservation of Parathyroid Function
5.1. Indocyanine Green Angiography (ICG)
5.2. Near Infrared Autofluorescence Imaging
5.2.1. PTeye
5.2.2. Fluobeam
6. Choosing Appropriate Surgery to Minimalize Post-Operative Complications
6.1. Thyroid Lobectomy vs. Total Thyroidectomy
6.2. Prophylactic Central Lymph Node Dissection
6.3. Risk Stratification and Implementation of Molecular Testing
7. New Boundaries of Artificial Intelligence in Thyroid Surgery
7.1. Application in Image Recognition
7.2. Application in Surgery
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Li, H.; Wang, M.; Li, N.; Tian, T.; Wu, Y.; Xu, P.; Yang, S.; Zhai, Z.; Zhou, L.; et al. Global Burden of Thyroid Cancer From 1990 to 2017. JAMA Netw. Open 2020, 3, e208759. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, J.J.; Drake, T.M.; Uttley, L.; Balasubramanian, S.P. Systematic Review of Trends in the Incidence Rates of Thyroid Cancer. Thyroid 2016, 26, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.M.N. Controlling the introduction of new and emerging medical technologies: Can we meet the challenge? J. R. Soc. Med. 1998, 91, 3–6. [Google Scholar] [CrossRef]
- Schollmeyer, T.; Soyinka, A.S.; Schollmeyer, M.; Meinhold-Heerlein, I. Georg Kelling (1866–1945): The root of modern day minimal invasive surgery. A forgotten legend? Arch. Gynecol. Obstet. 2007, 276, 505–509. [Google Scholar] [CrossRef]
- Ikeda, Y.; Takami, H.; Sasaki, Y.; Takayama, J.; Niimi, M.; Kan, S. Comparative study of thyroidectomies. Endoscopic surgery versus conventional open surgery. Surg. Endosc. 2002, 16, 1741–1745. [Google Scholar] [CrossRef]
- Yoon, J.H.; Park, C.H.; Chung, W.Y. Gasless Endoscopic Thyroidectomy via an Axillary Approach: Experience of 30 Cases. Surg. Laparosc. Endosc. Percutan. Tech. 2006, 16, 226–231. [Google Scholar] [CrossRef]
- Jantharapattana, K.; Maethasith, J. Transaxillary gasless endoscopic thyroidectomy versus conventional open thyroidectomy: A randomized study. Eur. Arch. Otorhinolaryngol. 2017, 274, 495–500. [Google Scholar] [CrossRef]
- Jasaitis, K.; Midlenko, A.; Bekenova, A.; Ignatavicius, P.; Gulbinas, A.; Dauksa, A. Transaxillary gasless endoscopic thyroidectomy versus conventional open thyroidectomy: Systematic review and meta-analysis. Videosurg. Miniinvasive Tech. 2021, 16, 482–490. [Google Scholar] [CrossRef]
- Darail, N.A.H.; Lee, S.H.; Kang, S.W.; Jeong, J.J.; Nam, K.H.; Chung, W.Y. Gasless Transaxillary Endoscopic Thyroidectomy: A Decade On. Surg. Laparosc. Endosc. Percutan. Tech. 2014, 24, e211–e215. [Google Scholar] [CrossRef]
- Kang, S.-W.; Jeong, J.J.; Yun, J.-S.; Sung, T.Y.; Lee, S.C.; Lee, Y.S.; Nam, K.-H.; Chang, H.-S.; Chung, W.Y.; Park, C.S. Robot-assisted endoscopic surgery for thyroid cancer: Experience with the first 100 patients. Surg. Endosc. 2009, 23, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Tae, K.; Ji, Y.B.; Jeong, J.H.; Kim, K.R.; Choi, W.H.; Ahn, Y.H. Comparative study of robotic versus endoscopic thyroidectomy by a gasless unilateral axillo-breast or axillary approach. Head Neck 2013, 35, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, J.H.; Nah, K.Y.; Soh, E.Y.; Chung, W.Y. Comparison of endoscopic and robotic thyroidectomy. Ann. Surg. Oncol. 2011, 18, 1439–1446. [Google Scholar] [CrossRef]
- Chang, Y.W.; Lee, H.Y.; Ji, W.B.; Kim, H.Y.; Kim, W.Y.; Lee, J.B.; Son, G.S. Detailed comparison of robotic and endoscopic transaxillary thyroidectomy. Asian J. Surg. 2020, 43, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Aliyev, S.T.H.; Agcaoglu, O.; Aksoy, E.; Milas, M.; Siperstein, A.; Berber, E. Robotic transaxillary total thyroidectomy through a single axillary incision. Surgery 2013, 153, 705–710. [Google Scholar] [CrossRef]
- Lorincz, B.B.; Busch, C.J.; Mockelmann, N.; Knecht, R. Initial learning curve of single-incision transaxillary robotic hemi- and total thyroidectomy—A single team experience from Europe. Int. J. Surg. 2015, 18, 118–122. [Google Scholar] [CrossRef]
- Kang, S.W.; Chung, W.Y. Transaxillary single-incision robotic neck dissection for metastatic thyroid cancer. Gland Surg. 2015, 4, 388–396. [Google Scholar]
- Kim, M.J.; Lee, J.; Lee, S.G.; Choi, J.B.; Kim, T.H.; Ban, E.J.; Lee, C.R.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H.; et al. Transaxillary robotic modified radical neck dissection: A 5-year assessment of operative and oncologic outcomes. Surg. Endosc. 2017, 31, 1599–1606. [Google Scholar] [CrossRef]
- Kim, J.K.; Choi, S.H.; Choi, S.M.; Choi, H.R.; Lee, C.R.; Kang, S.-W.; Jeong, J.J.; Nam, K.-H.; Chung, W.Y. Single-port transaxillary robotic thyroidectomy (START): 200-cases with two-step retraction method. Surg. Endosc. 2022, 36, 2688–2696. [Google Scholar] [CrossRef]
- Jackson, N.R.; Yao, L.; Tufano, R.P.; Kandil, E.H. Safety of robotic thyroidectomy approaches: Meta-analysis and systematic review. Head Neck 2014, 36, 137–143. [Google Scholar] [CrossRef]
- Choe, J.-H.; Kim, S.W.; Chung, K.-W.; Park, K.S.; Han, W.; Noh, D.-Y.; Oh, S.K.; Youn, Y.-K. Endoscopic thyroidectomy using a new bilateral axillo-breast approach. World J. Surg. 2007, 31, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Shimazu, K.; Shiba, E.; Tamaki, Y.; Takiguchi, S.; Taniguchi, E.; Ohashi, S.; Noguchi, S. Endoscopic thyroid surgery through the axillo-bilateral-breast approach. Surg. Laparosc. Endosc. Percutaneous Tech. 2003, 13, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Choe, J.-H.; Kang, K.-H.; Kim, S.W.; Chung, K.-W.; Park, K.S.; Han, W.; Noh, D.-Y.; Oh, S.K.; Youn, Y.-K. Endoscopic thyroidectomy for thyroid malignancies: Comparison with conventional open thyroidectomy. World J. Surg. 2007, 31, 2302–2306; discussion 7–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, K.E.; Choe, J.H.; Lee, J.; Koo d Oh, S.K.; Youn, Y.K. Endoscopic completion thyroidectomy by the bilateral axillo-breast approach. Surg. Laparosc. Endosc. Percutaneous Tech. 2010, 20, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Rao, J.; Youn, Y.K. Endoscopic thyroidectomy with the da Vinci robot system using the bilateral axillary breast approach (BABA) technique: Our initial experience. Surg. Laparosc. Endosc. Percutaneous Tech. 2009, 19, e71–e75. [Google Scholar] [CrossRef]
- Choi, Y.S.; Hong, Y.T.; Yi, J.W. Initial Experience With Robotic Modified Radical Neck Dissection Using the da Vinci Xi System Through the Bilateral Axillo-Breast Approach. Clin. Exp. Otorhinolaryngol. 2021, 14, 137–144. [Google Scholar] [CrossRef]
- Yu, H.W.; Chai, Y.J.; Kim, S.J.; Choi, J.Y.; Lee, K.E. Robotic-assisted modified radical neck dissection using a bilateral axillo-breast approach (robotic BABA MRND) for papillary thyroid carcinoma with lateral lymph node metastasis. Surg. Endosc. 2018, 32, 2322–2327. [Google Scholar] [CrossRef]
- Choi, J.Y.; Kang, K.H. Robotic modified radical neck dissection with bilateral axillo-breast approach. Gland Surg. 2017, 6, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.Y.; Kim, J.S. Bilateral axillo-breast approach robotic thyroidectomy: Review of evidences. Gland Surg. 2017, 6, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.; Liu, J. Meta-analysis Comparison of Bilateral Axillo-Breast Approach Robotic Thyroidectomy and Conventional Thyroidectomy. Surg. Innov. 2019, 26, 112–123. [Google Scholar] [CrossRef]
- Choi, J.Y.; Bae, I.E.; Kim, H.S.; Yoon, S.G.; Yi, J.W.; Yu, H.W.; Kim, S.-J.; Chai, Y.J.; Lee, K.E.; Youn, Y.-K. Comparative study of bilateral axillo-breast approach endoscopic and robotic thyroidectomy: Propensity score matching analysis of large multi-institutional data. Ann. Surg. Treat. Res. 2020, 98, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Woo, J.-W.; Park, I.; Lee, J.H.; Choe, J.-H.; Kim, J.-H.; Kim, J.S. Propensity score-matched analysis of robotic versus endoscopic bilateral axillo-breast approach (BABA) thyroidectomy in papillary thyroid carcinoma. Langenbecks Arch. Surg. 2017, 402, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Ruhle, B.C.; Ferguson Bryan, A.; Grogan, R.H. Robot-Assisted Endocrine Surgery: Indications and Drawbacks. J. Laparoendosc. Adv. Surg. Tech. A 2019, 29, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.H.; Chen, C.Y. Postoperative quality of life and cosmetic outcome between minimally invasive video-assisted thyroidectomy and bilateral axillo-breast approach robotic thyroidectomy: A single center retrospective cohort study. Updates Surg. 2021, 73, 1459–1465. [Google Scholar] [CrossRef] [PubMed]
- Benhidjeb, T.; Wilhelm, T.; Harlaar, J.; Kleinrensink, G.J.; Schneider, T.A.; Stark, M. Natural orifice surgery on thyroid gland: Totally transoral video-assisted thyroidectomy (TOVAT): Report of first experimental results of a new surgical method. Surg. Endosc. 2009, 23, 1119–1120. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, T.; Metzig, A. Video. Endoscopic minimally invasive thyroidectomy: First clinical experience. Surg. Endosc. 2010, 24, 1757–1758. [Google Scholar] [CrossRef]
- Karakas, E.; Steinfeldt, T.; Gockel, A.; Schlosshauer, T.; Dietz, C.; Jäger, J.; Westermann, R.; Sommer, F.; Richard, H.R.; Exner, C.; et al. Transoral thyroid and parathyroid surgery—Development of a new transoral technique. Surgery 2011, 150, 108–115. [Google Scholar] [CrossRef]
- Witzel, K.; von Rahden, B.H.; Kaminski, C.; Stein, H.J. Transoral access for endoscopic thyroid resection. Surg. Endosc. 2008, 22, 1871–1875. [Google Scholar] [CrossRef]
- Karakas, E.; Steinfeldt, T.; Gockel, A.; Westermann, R.; Kiefer, A.; Bartsch, D.K. Transoral thyroid and parathyroid surgery. Surg. Endosc. 2010, 24, 1261–1267. [Google Scholar] [CrossRef]
- Dionigi, G.; Bacuzzi, A.; Lavazza, M.; Inversini, D.; Pappalardo, V.; Boni, L.; Rausei, S.; Barczynski, M.; Tufano, R.P.; Kim, H.Y.; et al. Transoral endoscopic thyroidectomy via vestibular approach: Operative steps and video. Gland Surg. 2016, 5, 625–627. [Google Scholar] [CrossRef] [Green Version]
- Anuwong, A. Transoral Endoscopic Thyroidectomy Vestibular Approach: A Series of the First 60 Human Cases. World. J. Surg. 2016, 40, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Anuwong, A.; Ketwong, K.; Jitpratoom, P.; Sasanakietkul, T.; Duh, Q.Y. Safety and Outcomes of the Transoral Endoscopic Thyroidectomy Vestibular Approach. JAMA Surg. 2018, 153, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Richmon, J.D.; Pattani, K.M.; Benhidjeb, T.; Tufano, R.P. Transoral robotic-assisted thyroidectomy: A preclinical feasibility study in 2 cadavers. Head Neck 2011, 33, 330–333. [Google Scholar] [CrossRef] [PubMed]
- Richmon, J.D.; Holsinger, F.C.; Kandil, E.; Moore, M.W.; Garcia, J.A.; Tufano, R.P. Transoral robotic-assisted thyroidectomy with central neck dissection: Preclinical cadaver feasibility study and proposed surgical technique. J. Robot. Surg. 2011, 5, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajo, A.; Arima, H.; Hirata, M.; Mizoguchi, T.; Kijima, Y.; Mori, S.; Ishigami, S.; Ueno, S.; Yoshinaka, H.; Natsugoe, S. Trans-Oral Video-Assisted Neck Surgery (TOVANS). A new transoral technique of endoscopic thyroidectomy with gasless premandible approach. Surg. Endosc. 2013, 27, 1105–1110. [Google Scholar] [CrossRef] [Green Version]
- Ngo, D.Q.; Tran, T.D.; Le, D.T.; Ngo, Q.X.; Van Le, Q. Transoral Endoscopic Modified Radical Neck Dissection for Papillary Thyroid Carcinoma. Ann. Surg. Oncol. 2021, 28, 2766. [Google Scholar] [CrossRef]
- Yi, J.W.; Yoon, S.G.; Kim, H.S.; Yu, H.W.; Kim, S.-J.; Chai, Y.J.; Choi, J.Y.; Lee, K.E. Transoral endoscopic surgery for papillary thyroid carcinoma: Initial experiences of a single surgeon in South Korea. Ann. Surg. Treat Res. 2018, 95, 73–79. [Google Scholar] [CrossRef]
- Russell, J.O.; Sahli, Z.T.; Shaear, M.; Razavi, C.; Ali, K.; Tufano, R.P. Transoral thyroid and parathyroid surgery via the vestibular approach-a 2020 update. Gland Surg. 2020, 9, 409–416. [Google Scholar] [CrossRef]
- Bertelli, A.A.; Lira, R.B.; Goncalves, A.J.; Kowalski, L.P. Transoral endoscopic thyroidectomy vestibular approach (TOETVA) and complications. Rev. Col. Bras. Cir. 2021, 48, e20213084. [Google Scholar] [CrossRef]
- Shedd, D.P.; Durham, C. Electrical identification of the recurrent laryngeal nerve. I. Response of the canine larynx to electrical stimulation of the recurrent laryngeal nerve. Ann. Surg. 1966, 163, 47–50. [Google Scholar] [CrossRef]
- Shedd, D.P.; Burget, G.C. Identification of the recurrent laryngeal nerve. Arch. Surg. 1966, 92, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.R.; Chong, P.S.; Hartnick, C.J.; Randolph, G.W. Spontaneous and evoked laryngeal electromyography of the thyroarytenoid muscles: A canine model for intraoperative recurrent laryngeal nerve monitoring. Ann. Otol. Rhinol. Laryngol. 2010, 119, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Scott, A.R.; Chong, P.S.; Brigger, M.T.; Randolph, G.W.; Hartnick, C.J. Serial electromyography of the thyroarytenoid muscles using the NIM-response system in a canine model of vocal fold paralysis. Ann. Otol. Rhinol. Laryngol. 2009, 118, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.W.; Dralle, H.; Abdullah, H.; Barczynski, M.; Bellantone, R.; Brauckhoff, M.; Carnaille, B.; Cherenko, S.; Chiang, F.-Y.; Dionigi, G.; et al. Electrophysiologic recurrent laryngeal nerve monitoring during thyroid and parathyroid surgery: International standards guideline statement. Laryngoscope 2011, 121 (Suppl. 1), S1–S16. [Google Scholar] [CrossRef] [PubMed]
- Hayward, N.J.; Grodski, S.; Yeung, M.; Johnson, W.R.; Serpell, J. Recurrent laryngeal nerve injury in thyroid surgery: A review. ANZ J. Surg. 2013, 83, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.Y.K.K.; Yuen, P.W. A prospective evaluation of recurrent laryngeal nerve paralysis during thyroidectomy. Arch. Surg. 2000, 135, 204–207. [Google Scholar] [CrossRef] [Green Version]
- Cirocchi, R.; Arezzo, A.; D’Andrea, V.; Abraha, I.; Popivanov, G.I.; Avenia, N.; Gerardi, C.; Henry, R.M.; Randolph, J.; Barczyñski, M.; et al. Intraoperative neuromonitoring versus visual nerve identification for prevention of recurrent laryngeal nerve injury in adults undergoing thyroid surgery. Cochrane Database Syst. Rev. 2019, 1, CD012483. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Son, Y.I. Intraoperative Neuromonitoring for Thyroid Surgery: The Proven Benefits and Limitations. Clin. Exp. Otorhinolaryngol. 2019, 12, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Liu, J.; Zhang, H.; Zhang, P.; Wang, Z.; Dong, W.; He, L. A meta-analysis of intraoperative neuromonitoring of recurrent laryngeal nerve palsy during thyroid reoperations. Clin. Endocrinol. 2017, 87, 572–580. [Google Scholar] [CrossRef]
- Hauch, A.; Al-Qurayshi, Z.; Randolph, G.; Kandil, E. Total thyroidectomy is associated with increased risk of complications for low- and high-volume surgeons. Ann. Surg. Oncol. 2014, 21, 3844–3852. [Google Scholar] [CrossRef]
- Kazaure, H.S.; Sosa, J.A. Surgical Hypoparathyroidism. Endocrinol. Metab. Clin. N. Am. 2018, 47, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Walker Harris, V.; Jan De Beur, S. Postoperative hypoparathyroidism: Medical and surgical therapeutic options. Thyroid 2009, 19, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Orloff, L.A.; Wiseman, S.M.; Bernet, V.J.; Fahey, T.J., 3rd; Shaha, A.R.; Shindo, M.L.; Snyder, S.K.; Stack, B.C., Jr.; Sunwoo, J.B.; Wang, M.B.; et al. American Thyroid Association Statement on Postoperative Hypoparathyroidism: Diagnosis, Prevention, and Management in Adults. Thyroid 2018, 28, 830–841. [Google Scholar] [CrossRef] [PubMed]
- Edafe, O.; Antakia, R.; Laskar, N.; Uttley, L.; Balasubramanian, S.P. Systematic review and meta-analysis of predictors of post-thyroidectomy hypocalcaemia. Br. J. Surg. 2014, 101, 307–320. [Google Scholar] [CrossRef]
- Lavazza, M.; Liu, X.; Wu, C.; Anuwong, A.; Kim, H.Y.; Liu, R.; Randolph, G.W.; Inversini, D.; Boni, L.; Rausei, S.; et al. Indocyanine green-enhanced fluorescence for assessing parathyroid perfusion during thyroidectomy. Gland Surg. 2016, 5, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, N.; Bucak, E.; Yazici, P.; Soundararajan, S.; Okoh, A.; Yigitbas, H.; Dural, A.C.; Berber, E. The feasibility of indocyanine green fluorescence imaging for identifying and assessing the perfusion of parathyroid glands during total thyroidectomy. J. Surg. Oncol. 2016, 113, 775–778. [Google Scholar] [CrossRef]
- Vidal Fortuny, J.; Belfontali, V.; Sadowski, S.M.; Karenovics, W.; Guigard, S.; Triponez, F. Parathyroid gland angiography with indocyanine green fluorescence to predict parathyroid function after thyroid surgery. Br. J. Surg. 2016, 103, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Kim, S.H.; Jung, J.; Kim, S.W.; Hwang, S.H. Indocyanine green fluorescence for parathyroid gland identification and function prediction: Systematic review and meta-analysis. Head Neck 2022, 44, 783–791. [Google Scholar] [CrossRef]
- Solórzano, C.C.; Thomas, G.; Berber, E.; Wang, T.S.; Randolph, G.W.; Duh, Q.-Y.; Triponez, F. Current state of intraoperative use of near infrared fluorescence for parathyroid identification and preservation. Surgery 2021, 169, 868–878. [Google Scholar] [CrossRef]
- Kiernan, C.M.; Thomas, G.; Baregamian, N.; Solomicronrzano, C.C. Initial clinical experiences using the intraoperative probe-based parathyroid autofluorescence identification system-PTeye during thyroid and parathyroid procedures. J. Surg. Oncol. 2021, 124, 271–281. [Google Scholar] [CrossRef]
- Gorobeiko, M.; Dinets, A. Intraoperative detection of parathyroid glands by autofluorescence identification using image-based system: Report of 15 cases. J. Med. Case Rep. 2021, 15, 414. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez Schaap, P.M.; Botti, M.; Otten, R.H.J.; Dreijerink, K.M.A.; Nieveen van Dijkum, E.J.M.; Bonjer, H.J.; Engelsman, A.F.; Dickhoff, C. Hemithyroidectomy versus total thyroidectomy for well differentiated T1-2 N0 thyroid cancer: Systematic review and meta-analysis. BJS Open 2020, 4, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.E.M.; Kandil, E.; Noureldine, S.I.; Felger, E.A.; Tufano, R.P.; Kraus, D.H.; Orloff, L.A.; Grogan, R.; Angelos, P.; Stack, B.C., Jr.; et al. Indications and extent of central neck dissection for papillary thyroid cancer: An American Head and Neck Society Consensus Statement. Head Neck 2017, 39, 1269–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viola, D.; Materazzi, G.; Valerio, L.; Molinaro, E.; Agate, L.; Faviana, P.; Seccia, V.; Sensi, E.; Romei, C.; Piaggi, P.; et al. Prophylactic central compartment lymph node dissection in papillary thyroid carcinoma: Clinical implications derived from the first prospective randomized controlled single institution study. J. Clin. Endocrinol. Metab. 2015, 100, 1316–1324. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.-H.; Kwak, J.H.; Yoon, S.G.; Yi, J.W.; Yu, H.W.; Kwon, H.; Kim, S.-J.; Lee, K.E. A prospective randomized controlled trial to assess the efficacy and safety of prophylactic central compartment lymph node dissection in papillary thyroid carcinoma. Surgery 2022, 171, 182–189. [Google Scholar] [CrossRef]
- Gambardella, C.; Patrone, R.; Di Capua, F.; Offi, C.; Mauriello, C.; Clarizia, G.; Andretta, C.; Polistena, A.; Sanguinetti, A.; Calò, P.; et al. The role of prophylactic central compartment lymph node dissection in elderly patients with differentiated thyroid cancer: A multicentric study. BMC Surg. 2019, 18 (Suppl. 1), 110. [Google Scholar] [CrossRef]
- Giuliano, S.; Mirabelli, M.; Chiefari, E.; Tocci, V.; Donnici, A.; Iuliano, S.; Salatino, A.; Foti, D.P.; Aversa, A.; Brunetti, A. The Initial ATA Risk Classification, but Not the AJCC/TNM Stage, Predicts the Persistence or Relapse of Differentiated Thyroid Cancer in Long-Term Surveillance. Endocrines 2022, 3, 512–521. [Google Scholar] [CrossRef]
- Giuliano, S.; Mirabelli, M.; Chiefari, E.; Vergine, M.; Gervasi, R.; Brunetti, F.; Innaro, N.; Donato, G.; Aversa, A.; Brunetti, A. Malignancy Analyses of Thyroid Nodules in Patients Subjected to Surgery with Cytological- and Ultrasound-Based Risk Stratification Systems. Endocrines 2020, 1, 102–118. [Google Scholar] [CrossRef]
- Roth, M.Y.; Witt, R.L.; Steward, D.L. Molecular testing for thyroid nodules: Review and current state. Cancer 2018, 124, 888–898. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.; Minsky, M.; Rochester, N.; Shannon, C.L. The dartmouth summer research project on artificial intelligence. Artif. Intell. Past Present Future 1956. [Google Scholar] [CrossRef]
- Chang, Y.; Paul, A.K.; Kim, N.; Baek, J.H.; Choi, Y.J.; Ha, E.J.; Lee, K.D.; Lee, H.S.; Shin, D.; Kim, N. Computer-aided diagnosis for classifying benign versus malignant thyroid nodules based on ultrasound images: A comparison with radiologist-based assessments. Med. Phys. 2016, 43, 554. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-K.; Ren, T.-T.; Yin, Y.-F.; Shi, H.; Wang, H.-X.; Zhou, B.-Y.; Wang, X.-R.; Li, X.; Zhang, Y.-F.; Liu, C.; et al. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate. Thyroid 2021, 31, 470–481. [Google Scholar] [CrossRef]
- Park, V.; Han, K.; Seong, Y.K.; Park, M.H.; Kim, E.-K.; Moon, H.J.; Yoon, J.H.; Kwak, J.Y. Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists. Sci. Rep. 2019, 9, 17843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potipimpanon, P.; Charakorn, N.; Hirunwiwatkul, P. A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: A systematic review and meta-analysis. Eur. Arch. Otorhinolaryngol. 2022, 279, 5363–5373. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Nevejans, N.; Allen, C.; Blyth, A.; Leonard, S.; Pagallo, U.; Holzinger, K.; Holzinger, A.; Sajid, M.I.; Ashrafian, H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. 2019, 15, e1968. [Google Scholar] [CrossRef]
Harmonic Focus | Ligasure TM Small Jaw | Thunderbeat | |
---|---|---|---|
Energy used | Ultrasound | Bipolar | Both |
Sealing diameter | 5 mm | 7 mm | 7 mm |
Thermal spread | 3 mm | 1 mm | 3 mm |
Name of Device | Producer |
---|---|
Fluobeam 800 | Fluoptics, Grenoble, France |
Fluobeam LX | Fluoptics, Grenoble, France |
PTeye | Medtronic, Dublin, Ireland |
PINPOINT® + SPY-PHI | Stryker, Kalamazoo, MI, USA |
Pde-neo II | HAMAMATSU PHOTONICS K.K., Shizuoka, Japan |
Quest Spectrum® | Quest Meidcal Imaging, Wieringerwerf, The Netherlands |
EleVision™ IR Platform | Medtronic, Dublin, Ireland |
IMGE1 S™ RUBINA | Karl Storz, Tuttlingen, Germany |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, W.; Lee, J.K.; Yu, H.W.; Choi, J.Y. Advancements in Thyroidectomy: A Mini Review. Endocrines 2022, 3, 789-800. https://doi.org/10.3390/endocrines3040065
Kim W, Lee JK, Yu HW, Choi JY. Advancements in Thyroidectomy: A Mini Review. Endocrines. 2022; 3(4):789-800. https://doi.org/10.3390/endocrines3040065
Chicago/Turabian StyleKim, Woochul, Ja Kyung Lee, Hyeong Won Yu, and June Young Choi. 2022. "Advancements in Thyroidectomy: A Mini Review" Endocrines 3, no. 4: 789-800. https://doi.org/10.3390/endocrines3040065
APA StyleKim, W., Lee, J. K., Yu, H. W., & Choi, J. Y. (2022). Advancements in Thyroidectomy: A Mini Review. Endocrines, 3(4), 789-800. https://doi.org/10.3390/endocrines3040065