Prenatal Screening for Chromosomal Defects
Abstract
:1. Introduction
2. Screening Strategies for Chromosomal Defects
2.1. Basic Facts About the Prenatal Screening for Chromosomal Defects
- False Positive Rate (FPR)—Percentage of unaffected pregnancies incorrectly flagged as high risk.
- Detection Rate (DR)—Percentage of actual cases correctly identified.
- Positive and Negative Predictive Values (PPV/NPV)—The likelihood that a positive or negative result is correct.
2.2. Screening by Maternal and Gestational Age
2.3. Previous Affected Pregnancy
2.4. Second-Trimester Maternal Serum Biochemistry
2.5. First-Trimester Screening
2.5.1. Nuchal Translucency
2.5.2. Maternal Serum Biochemistry
2.5.3. First-Trimester Screening by Combined Test (NT-Maternal Serum Biochemistry)
2.5.4. Additional First-Trimester Ultrasound Markers
2.6. First-Trimester Screening Followed by Second-Trimester Biochemical Testing
2.6.1. Integrated Test
2.6.2. Stepwise Sequential Test
2.6.3. Independent Sequential Screening
2.6.4. Contingent Test
2.7. Second-Trimester Ultrasound (Genetic Sonogram)
2.7.1. Down Syndrome
2.7.2. Trisomy 18
2.7.3. Trisomy 13
2.7.4. Triploidy
2.7.5. Turner Syndrome and Other Sex Chromosome Aneuploidies
2.7.6. DiGeorge Syndrome (Microdeletion 22q11.2)
2.7.7. Smith–Lemli–Opitz (SLO) Syndrome
2.7.8. Rare Chromosomal Abnormalities (RCA)
2.8. Non-Invasive Prenatal Cell-Free DNA Testing (NIPT)
2.8.1. The Principle of NIPT
2.8.2. NIPT Methodologies
2.8.3. Performance of NIPT for the Common Conditions Screened
2.8.4. NIPT No-Calls and Complex Results
2.8.5. Expanded Testing with NIPT
2.8.6. The Future of NIPT
3. Conclusions
Funding
Conflicts of Interest
References
- Nicolaides, K.H. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat. Diagn. 2011, 31, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K. Aneuploidy screening in the first trimester. Am. J. Med. Genet. C Semin. Med. Genet. 2007, 145, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Dolk, H.; Loane, M.; Garne, E. The prevalence of congenital anomalies in Europe. Adv. Exp. Med. Biol. 2010, 686, 349–364. [Google Scholar] [PubMed]
- Jindal, A.; Sharma, M.; Karena, Z.V.; Chaudhary, C. Amniocentesis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Anderson, C.L.; Brown, C.E. Fetal chromosomal abnormalities: Antenatal screening and diagnosis. Am. Fam. Physician 2009, 79, 117–123. [Google Scholar]
- Alldred, S.K.; Takwoingi, Y.; Guo, B.; Pennant, M.; Deeks, J.J.; Neilson, J.P.; Alfirevic, Z. First and second trimester serum tests with and without first trimester ultrasound tests for Down’s syndrome screening. Cochrane Database Syst. Rev. 2017, 3, CD012599. [Google Scholar]
- Nicolaides, K.H.; Azar, G.; Byrne, D.; Mansur, C.; Marks, K. Fetal nuchal translucency: Ultrasound screening for chromosomal defects in first trimester of pregnancy. BMJ 1992, 304, 867–869. [Google Scholar] [CrossRef]
- Pandya, P.P.; Snijders, R.J.; Johnson, S.P.; De Lourdes Brizot, M.; Nicolaides, K.H. Screening for fetal trisomies by maternal age and fetal nuchal translucency thickness at 10 to 14 weeks of gestation. Br. J. Obstet. Gynaecol. 1995, 102, 957–962. [Google Scholar] [CrossRef]
- Spencer, K.; Souter, V.; Tul, N.; Snijders, R.; Nicolaides, K.H. A screening program for trisomy 21 at 10–14 weeks using fetal nuchal translucency, maternal serum free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet. Gynecol. 1999, 13, 231–237. [Google Scholar] [CrossRef]
- Wald, N.J.; Rodeck, C.; Hackshaw, A.K.; Rudnicka, A. SURUSS in perspective. Semin. Perinatol. 2005, 29, 225–235. [Google Scholar] [CrossRef]
- Cuckle, H.S.; Malone, F.D.; Wright, D.; Porter, T.F.; Nyberg, D.A.; Comstock, C.H.; Saade, G.R.; Berkowitz, R.L.; Ferreira, J.C.; Dugoff, L.; et al. Contingent screening for Down syndrome—results from the FaSTER trial. Prenat. Diagn. 2008, 28, 89–94. [Google Scholar] [CrossRef]
- Abele, H.; Wagner, P.; Sonek, J.; Hoopmann, M.; Brucker, S.; Artunc-Ulkumen, B.; Kagan, K.O. First trimester ultrasound screening for Down syndrome based on maternal age, fetal nuchal translucency and different combinations of the additional markers nasal bone, tricuspid and ductus venosus flow. Prenat. Diagn. 2015, 35, 1182–1186. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, S.R.; Tahmasebpour, A.R.; Jamal, A.; Hantoushzadeh, S.; Eslamian, L.; Marsoosi, V.; Fattahi, F.; Rajaei, M.; Niroomanesh, S.; Borna, S.; et al. First-trimester screening for chromosomal abnormalities by integrated application of nuchal translucency, nasal bone, tricuspid regurgitation and ductus venosus flow combined with maternal serum free beta-hCG and PAPP-A: A 5-year prospective study. Ultrasound Obstet. Gynecol. 2012, 39, 528–534. [Google Scholar] [CrossRef]
- Hsiao, C.H.; Cheng, P.J.; Shaw, S.W.; Hsu, J.J.; Chen, R.C.; Tseng, Y.J.; Chu, W.C. Extended first-trimester screening using multiple sonographic markers and maternal serum biochemistry: A five-year prospective study. Fetal Diagn. Ther. 2014, 35, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Norton, M.E.; Jacobsson, B.; Swamy, G.K.; Laurent, L.C.; Ranzini, A.C.; Brar, H.; Tomlinson, M.W.; Pereira, L.; Spitz, J.L.; Hollemon, D.; et al. Cell-free DNA analysis for noninvasive examination of trisomy. N. Engl. J. Med. 2015, 372, 1589–1597. [Google Scholar] [CrossRef]
- Iwarsson, E.; Jacobsson, B.; Dagerhamn, J.; Davidson, T.; Bernabe, E.; Heibert Arnlind, M. Analysis of cell-free fetal DNA in maternal blood for detection of trisomy 21, 18 and 13 in a general pregnant population and in a high risk population—A systematic review and meta-analysis. Acta Obstet. Gynecol. Scand. 2017, 96, 7–18. [Google Scholar] [CrossRef]
- Gil, M.M.; Accurti, V.; Santacruz, B.; Plana, M.N.; Nicolaides, K.H. Analysis of cell-free DNA in maternal blood in screening for aneuploidies: Updated meta-analysis. Ultrasound Obstet. Gynecol. 2017, 50, 302–314. [Google Scholar] [CrossRef]
- Demko, Z.; Prigmore, B.; Benn, P. A Critical Evaluation of Validation and Clinical Experience Studies in Non-Invasive Prenatal Testing for Trisomies 21, 18, and 13 and Monosomy X. J. Clin. Med. 2022, 11, 4760. [Google Scholar] [CrossRef] [PubMed]
- van der Meij, K.R.M.; Sistermans, E.A.; Macville, M.V.E.; Stevens, S.J.C.; Bax, C.J.; Bekker, M.N.; Bilardo, C.M.; Boon, E.M.J.; Boter, M.; Diderich, K.E.M.; et al. TRIDENT-2: National Implementation of Genome-wide Non-invasive Prenatal Testing as a First-Tier Screening Test in the Netherlands. Am. J. Hum. Genet. 2019, 105, 1091–1101. [Google Scholar] [CrossRef]
- Kagan, K.O.; Sonek, J.; Kozlowski, P. Antenatal screening for chromosomal abnormalities. Arch. Gynecol. Obstet. 2022, 305, 825–835. [Google Scholar] [CrossRef]
- Dungan, J.S.; Klugman, S.; Darilek, S.; Malinowski, J.; Akkari, Y.M.N.; Monaghan, K.G.; Erwin, A.; Best, R.G. Noninvasive prenatal screening (NIPS) for fetal chromosome abnormalities in a general-risk population: An evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet. Med. 2023, 25, 100336. [Google Scholar] [CrossRef]
- Benn, P.; Cuckle, H. Overview of Noninvasive Prenatal Testing (NIPT) for the Detection of Fetal Chromosome Abnormalities; Differences in Laboratory Methods and Scope of Testing. Clin. Obstet. Gynecol. 2023, 66, 536–556. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.J. Reproductive genetic screening for information: Evolving paradigms? J. Perinat. Med. 2021, 49, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Gilstrop Thompson, M.; Xu, W.; Moore, B.; Wang, T.; Sun, N.; Pewar, H.; Avent, N.D.; Vernaza, A.; Acosta, F.; Saben, J.L.; et al. Clinical Validation of a Prenatal Cell-Free DNA Screening Test for Fetal RHD in a Large U.S. Cohort. Obstet. Gynecol. 2025, 145, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.C.; Barrie, E.S.; Malinowski, J.; Jenkins, G.P.; McClain, M.R.; LaGrave, D.; Leung, M.L.; Practice, A.P.; Guidelines, C. Systematic evidence-based review: The application of noninvasive prenatal screening using cell-free DNA in general-risk pregnancies. Genet. Med. 2022, 24, 1992. [Google Scholar] [CrossRef]
- Nicolaides, K.H. Screening for chromosomal defects. Ultrasound Obstet. Gynecol. 2003, 21, 313–321. [Google Scholar] [CrossRef]
- Chitayat, D.; Langlois, S.; Douglas Wilson, R.; Sogc Genetics, C.; Ccmg Prenatal Diagnosis, C. Prenatal screening for fetal aneuploidy in singleton pregnancies. J. Obstet. Gynaecol. Can. 2011, 33, 736–750. [Google Scholar] [CrossRef]
- Santorum, M.; Wright, D.; Syngelaki, A.; Karagioti, N.; Nicolaides, K.H. Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet. Gynecol. 2017, 49, 714–720. [Google Scholar] [CrossRef]
- Elmerdahl Frederiksen, L.; Olgaard, S.M.; Roos, L.; Petersen, O.B.; Rode, L.; Hartwig, T.; Ekelund, C.K.; Danish Central Cytogenetics Registry Study, G.; Vogel, I. Maternal age and the risk of fetal aneuploidy: A nationwide cohort study of more than 500 000 singleton pregnancies in Denmark from 2008 to 2017. Acta Obstet. Gynecol. Scand. 2024, 103, 351–359. [Google Scholar] [CrossRef]
- Snijders, R.J.; Sundberg, K.; Holzgreve, W.; Henry, G.; Nicolaides, K.H. Maternal age- and gestation-specific risk for trisomy 21. Ultrasound Obstet. Gynecol. 1999, 13, 167–170. [Google Scholar] [CrossRef]
- Hook, E.B.; Cross, P.K.; Schreinemachers, D.M. Chromosomal abnormality rates at amniocentesis and in live-born infants. JAMA 1983, 249, 2034–2038. [Google Scholar] [CrossRef]
- Snijders, R.J.; Sebire, N.J.; Nicolaides, K.H. Maternal age and gestational age-specific risk for chromosomal defects. Fetal Diagn. Ther. 1995, 10, 356–367. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.K.; Wald, N.J.; Watt, H.C. Fetal loss in Down syndrome pregnancies. Prenat. Diagn. 1999, 19, 142–145. [Google Scholar] [CrossRef]
- Warburton, D.; Dallaire, L.; Thangavelu, M.; Ross, L.; Levin, B.; Kline, J. Trisomy recurrence: A reconsideration based on North American data. Am. J. Hum. Genet. 2004, 75, 376–385. [Google Scholar] [CrossRef] [PubMed]
- De Souza, E.; Halliday, J.; Chan, A.; Bower, C.; Morris, J.K. Recurrence risks for trisomies 13, 18, and 21. Am. J. Med. Genet. A 2009, 149, 2716–2722. [Google Scholar] [CrossRef]
- van Zutven, L.; Mijalkovic, J.; van Veghel-Plandsoen, M.; Goense, M.; Polak, M.; Knapen, M.; de Weerd, S.; Joosten, M.; Diderich, K.E.M.; Hoefsloot, L.H.; et al. What proportion of couples with a history of recurrent pregnancy loss and with a balanced rearrangement in one parent can potentially be identified through cell-free DNA genotyping? Mol. Cytogenet. 2023, 16, 26. [Google Scholar] [CrossRef]
- Xie, M.; Xue, J.; Zhang, Y.; Zhou, Y.; Yu, Q.; Li, H.; Li, Q. Combination of trio-based whole exome sequencing and optical genome mapping reveals a cryptic balanced translocation that causes unbalanced chromosomal rearrangements in a family with multiple anomalies. Front. Genet. 2023, 14, 1248544. [Google Scholar] [CrossRef]
- Merkatz, I.R.; Nitowsky, H.M.; Macri, J.N.; Johnson, W.E. An association between low maternal serum alpha-fetoprotein and fetal chromosomal abnormalities. Am. J. Obstet. Gynecol. 1984, 148, 886–894. [Google Scholar] [CrossRef]
- Wald, N.J.; Cuckle, H.S.; Densem, J.W.; Nanchahal, K.; Royston, P.; Chard, T.; Haddow, J.E.; Knight, G.J.; Palomaki, G.E.; Canick, J.A. Maternal serum screening for Down’s syndrome in early pregnancy. BMJ 1988, 297, 883–887. [Google Scholar] [CrossRef]
- Wald, N.J.; Huttly, W.J.; Hackshaw, A.K. Antenatal screening for Down’s syndrome with the quadruple test. Lancet 2003, 361, 835–836. [Google Scholar] [CrossRef]
- Wald, N.J.; Densem, J.W.; George, L.; Muttukrishna, S.; Knight, P.G. Prenatal screening for Down’s syndrome using inhibin-A as a serum marker. Prenat. Diagn. 1996, 16, 143–153. [Google Scholar] [CrossRef]
- Cuckle, H. Biochemical screening for Down syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000, 92, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Porter, F.D. RSH/Smith-Lemli-Opitz syndrome: A multiple congenital anomaly/mental retardation syndrome due to an inborn error of cholesterol biosynthesis. Mol. Genet. Metab. 2000, 71, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Jira, P.E.; Waterham, H.R.; Wanders, R.J.; Smeitink, J.A.; Sengers, R.C.; Wevers, R.A. Smith-Lemli-Opitz syndrome and the DHCR7 gene. Ann. Hum. Genet. 2003, 67, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Palomaki, G.E.; Bradley, L.A.; Knight, G.J.; Craig, W.Y.; Haddow, J.E. Assigning risk for Smith-Lemli-Opitz syndrome as part of 2nd trimester screening for Down’s syndrome. J. Med. Screen. 2002, 9, 43–44. [Google Scholar] [CrossRef]
- Bradley, L.A.; Palomaki, G.E.; Knight, G.J.; Haddow, J.E.; Opitz, J.M.; Irons, M.; Kelley, R.I.; Tint, G.S. Levels of unconjugated estriol and other maternal serum markers in pregnancies with Smith-Lemli-Opitz (RSH) syndrome fetuses. Am. J. Med. Genet. 1999, 82, 355–358. [Google Scholar] [CrossRef]
- Pandya, P.P.; Kondylios, A.; Hilbert, L.; Snijders, R.J.; Nicolaides, K.H. Chromosomal defects and outcome in 1015 fetuses with increased nuchal translucency. Ultrasound Obstet. Gynecol. 1995, 5, 15–19. [Google Scholar] [CrossRef]
- Nicolaides, K.H. Nuchal translucency and other first-trimester sonographic markers of chromosomal abnormalities. Am. J. Obstet. Gynecol. 2004, 191, 45–67. [Google Scholar] [CrossRef]
- Kagan, K.O.; Avgidou, K.; Molina, F.S.; Gajewska, K.; Nicolaides, K.H. Relation between increased fetal nuchal translucency thickness and chromosomal defects. Obstet. Gynecol. 2006, 107, 6–10. [Google Scholar] [CrossRef]
- Souka, A.P.; Krampl, E.; Bakalis, S.; Heath, V.; Nicolaides, K.H. Outcome of pregnancy in chromosomally normal fetuses with increased nuchal translucency in the first trimester. Ultrasound Obstet. Gynecol. 2001, 18, 9–17. [Google Scholar] [CrossRef]
- Bilardo, C.M.; Muller, M.A.; Pajkrt, E.; Clur, S.A.; van Zalen, M.M.; Bijlsma, E.K. Increased nuchal translucency thickness and normal karyotype: Time for parental reassurance. Ultrasound Obstet. Gynecol. 2007, 30, 11–18. [Google Scholar] [CrossRef]
- Bekker, M.N. A normal 20-week scan of a euploid fetus with a history of first-trimester increased nuchal translucency: Caution or reassurance? Ultrasound Obstet. Gynecol. 2007, 30, 8–10. [Google Scholar] [CrossRef]
- Bardi, F.; Bosschieter, P.; Verheij, J.; Go, A.; Haak, M.; Bekker, M.; Sikkel, E.; Coumans, A.; Pajkrt, E.; Bilardo, C. Is there still a role for nuchal translucency measurement in the changing paradigm of first trimester screening? Prenat. Diagn. 2020, 40, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Grande, M.; Jansen, F.A.; Blumenfeld, Y.J.; Fisher, A.; Odibo, A.O.; Haak, M.C.; Borrell, A. Genomic microarray in fetuses with increased nuchal translucency and normal karyotype: A systematic review and meta-analysis. Ultrasound Obstet. Gynecol. 2015, 46, 650–658. [Google Scholar] [CrossRef] [PubMed]
- Senat, M.V.; Bussieres, L.; Couderc, S.; Roume, J.; Rozenberg, P.; Bouyer, J.; Ville, Y. Long-term outcome of children born after a first-trimester measurement of nuchal translucency at the 99th percentile or greater with normal karyotype: A prospective study. Am. J. Obstet. Gynecol. 2007, 196, 53.e1–53.e6. [Google Scholar] [CrossRef]
- Stuurman, K.E.; Joosten, M.; van der Burgt, I.; Elting, M.; Yntema, H.G.; Meijers-Heijboer, H.; Rinne, T. Prenatal ultrasound findings of rasopathies in a cohort of 424 fetuses: Update on genetic testing in the NGS era. J. Med. Genet. 2019, 56, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Kelley, J.; McGillivray, G.; Meagher, S.; Hui, L. Increased nuchal translucency after low-risk noninvasive prenatal testing: What should we tell prospective parents? Prenat. Diagn. 2021, 41, 1305–1315. [Google Scholar] [CrossRef]
- Wright, D.; Spencer, K.; Kagan, K.K.; Torring, N.; Petersen, O.B.; Christou, A.; Kallikas, J.; Nicolaides, K.H. First-trimester combined screening for trisomy 21 at 7–14 weeks’ gestation. Ultrasound Obstet. Gynecol. 2010, 36, 404–411. [Google Scholar] [CrossRef]
- Kagan, K.O.; Wright, D.; Baker, A.; Sahota, D.; Nicolaides, K.H. Screening for trisomy 21 by maternal age, fetal nuchal translucency thickness, free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet. Gynecol. 2008, 31, 618–624. [Google Scholar] [CrossRef]
- Spencer, K.; Nicolaides, K.H. A first trimester trisomy 13/trisomy 18 risk algorithm combining fetal nuchal translucency thickness, maternal serum free beta-hCG and PAPP-A. Prenat. Diagn. 2002, 22, 877–879. [Google Scholar] [CrossRef]
- Spencer, K.; Ong, C.; Skentou, H.; Liao, A.W.; Nicolaides, K.H. Screening for trisomy 13 by fetal nuchal translucency and maternal serum free beta-hCG and PAPP-A at 10–14 weeks of gestation. Prenat. Diagn. 2000, 20, 411–416. [Google Scholar] [CrossRef]
- Spencer, K.; Liao, A.W.; Skentou, H.; Cicero, S.; Nicolaides, K.H. Screening for triploidy by fetal nuchal translucency and maternal serum free beta-hCG and PAPP-A at 10–14 weeks of gestation. Prenat. Diagn. 2000, 20, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Spencer, K.; Tul, N.; Nicolaides, K.H. Maternal serum free beta-hCG and PAPP-A in fetal sex chromosome defects in the first trimester. Prenat. Diagn. 2000, 20, 390–394. [Google Scholar] [CrossRef]
- Petersen, O.B.; Vogel, I.; Ekelund, C.; Hyett, J.; Tabor, A.; Danish Fetal Medicine Study, G.; Danish Clinical Genetics Study, G. Potential diagnostic consequences of applying non-invasive prenatal testing: Population-based study from a country with existing first-trimester screening. Ultrasound Obstet. Gynecol. 2014, 43, 265–271. [Google Scholar] [CrossRef]
- Wijngaard, R.; Casals, E.; Mercade, I.; Laguna, J.; Madrigal, I.; Badenas, C.; Borrell, A.; Rodriguez-Revenga, L. Significance of Low Maternal Serum Beta-hCG Levels in the Assessment of the Risk of Atypical Chromosomal Abnormalities. Fetal Diagn. Ther. 2021, 48, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Syngelaki, A.; Bradbury, I.; Akolekar, R.; Nicolaides, K.H. First-trimester screening for trisomies 21, 18 and 13 by ultrasound and biochemical testing. Fetal Diagn. Ther. 2014, 35, 118–126. [Google Scholar] [CrossRef]
- Kagan, K.O.; Cicero, S.; Staboulidou, I.; Wright, D.; Nicolaides, K.H. Fetal nasal bone in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 259–264. [Google Scholar] [CrossRef]
- Cicero, S.; Avgidou, K.; Rembouskos, G.; Kagan, K.O.; Nicolaides, K.H. Nasal bone in first-trimester screening for trisomy 21. Am. J. Obstet. Gynecol. 2006, 195, 109–114. [Google Scholar] [CrossRef]
- Kagan, K.O.; Valencia, C.; Livanos, P.; Wright, D.; Nicolaides, K.H. Tricuspid regurgitation in screening for trisomies 21, 18 and 13 and Turner syndrome at 11 + 0 to 13 + 6 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 18–22. [Google Scholar] [CrossRef]
- Maiz, N.; Valencia, C.; Kagan, K.O.; Wright, D.; Nicolaides, K.H. Ductus venosus Doppler in screening for trisomies 21, 18 and 13 and Turner syndrome at 11–13 weeks of gestation. Ultrasound Obstet. Gynecol. 2009, 33, 512–517. [Google Scholar] [CrossRef]
- Kagan, K.O.; Staboulidou, I.; Cruz, J.; Wright, D.; Nicolaides, K.H. Two-stage first-trimester screening for trisomy 21 by ultrasound assessment and biochemical testing. Ultrasound Obstet. Gynecol. 2010, 36, 542–547. [Google Scholar] [CrossRef]
- Wagner, P.; Sonek, J.; Hoopmann, M.; Abele, H.; Kagan, K.O. First-trimester screening for trisomies 18 and 13, triploidy and Turner syndrome by detailed early anomaly scan. Ultrasound Obstet. Gynecol. 2016, 48, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Kagan, K.O.; Staboulidou, I.; Syngelaki, A.; Cruz, J.; Nicolaides, K.H. The 11-13-week scan: Diagnosis and outcome of holoprosencephaly, exomphalos and megacystis. Ultrasound Obstet. Gynecol. 2010, 36, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Sherod, C.; Sebire, N.J.; Soares, W.; Snijders, R.J.; Nicolaides, K.H. Prenatal diagnosis of trisomy 18 at the 10-14-week ultrasound scan. Ultrasound Obstet. Gynecol. 1997, 10, 387–390. [Google Scholar] [CrossRef] [PubMed]
- Snijders, R.J.; Sebire, N.J.; Nayar, R.; Souka, A.; Nicolaides, K.H. Increased nuchal translucency in trisomy 13 fetuses at 10-14 weeks of gestation. Am. J. Med. Genet. 1999, 86, 205–207. [Google Scholar] [CrossRef]
- Sebire, N.J.; Snijders, R.J.; Brown, R.; Southall, T.; Nicolaides, K.H. Detection of sex chromosome abnormalities by nuchal translucency screening at 10-14 weeks. Prenat. Diagn. 1998, 18, 581–584. [Google Scholar] [CrossRef]
- Jauniaux, E.; Brown, R.; Snijders, R.J.; Noble, P.; Nicolaides, K.H. Early prenatal diagnosis of triploidy. Am. J. Obstet. Gynecol. 1997, 176, 550–554. [Google Scholar] [CrossRef]
- Syngelaki, A.; Guerra, L.; Ceccacci, I.; Efeturk, T.; Nicolaides, K.H. Impact of holoprosencephaly, exomphalos, megacystis and increased nuchal translucency on first-trimester screening for chromosomal abnormalities. Ultrasound Obstet. Gynecol. 2017, 50, 45–48. [Google Scholar] [CrossRef]
- Malone, F.D.; Canick, J.A.; Ball, R.H.; Nyberg, D.A.; Comstock, C.H.; Bukowski, R.; Berkowitz, R.L.; Gross, S.J.; Dugoff, L.; Craigo, S.D.; et al. First-trimester or second-trimester screening, or both, for Down’s syndrome. N. Engl. J. Med. 2005, 353, 2001–2011. [Google Scholar] [CrossRef]
- Smith, M.; Visootsak, J. Noninvasive screening tools for Down syndrome: A review. Int. J. Womens Health 2013, 5, 125–131. [Google Scholar]
- Cuckle, H.; Benn, P.; Wright, D. Down syndrome screening in the first and/or second trimester: Model predicted performance using meta-analysis parameters. Semin. Perinatol. 2005, 29, 252–257. [Google Scholar] [CrossRef]
- Nicolaides, K.; Shawwa, L.; Brizot, M.; Snijders, R. Ultrasonographically detectable markers of fetal chromosomal defects. Ultrasound Obstet. Gynecol. 1993, 3, 56–69. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, D.A.; Souter, V.L. Sonographic markers of fetal trisomies: Second trimester. J. Ultrasound Med. 2001, 20, 655–674. [Google Scholar] [CrossRef]
- Benacerraf, B.R. The role of the second trimester genetic sonogram in screening for fetal Down syndrome. Semin. Perinatol. 2005, 29, 386–394. [Google Scholar] [CrossRef]
- Odibo, A.O.; Ghidini, A. Role of the second-trimester ‘genetic sonogram’ for Down syndrome screen in the era of first-trimester screening and noninvasive prenatal testing. Prenat. Diagn. 2014, 34, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Benacerraf, B.R.; Barss, V.A.; Laboda, L.A. A sonographic sign for the detection in the second trimester of the fetus with Down’s syndrome. Am. J. Obstet. Gynecol. 1985, 151, 1078–1079. [Google Scholar] [CrossRef]
- Agathokleous, M.; Chaveeva, P.; Poon, L.C.; Kosinski, P.; Nicolaides, K.H. Meta-analysis of second-trimester markers for trisomy 21. Ultrasound Obstet. Gynecol. 2013, 41, 247–261. [Google Scholar] [CrossRef]
- Smith-Bindman, R.; Hosmer, W.; Feldstein, V.A.; Deeks, J.J.; Goldberg, J.D. Second-trimester ultrasound to detect fetuses with Down syndrome: A meta-analysis. JAMA 2001, 285, 1044–1055. [Google Scholar] [CrossRef]
- Shipp, T.D.; Benacerraf, B.R. Second trimester ultrasound screening for chromosomal abnormalities. Prenat. Diagn. 2002, 22, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Benacerraf, B.R. The history of the second-trimester sonographic markers for detecting fetal Down syndrome, and their current role in obstetric practice. Prenat. Diagn. 2010, 30, 644–652. [Google Scholar] [CrossRef]
- Bromley, B.; Lieberman, E.; Shipp, T.D.; Benacerraf, B.R. The genetic sonogram: A method of risk assessment for Down syndrome in the second trimester. J. Ultrasound Med. 2002, 21, 1087–1096. [Google Scholar] [CrossRef]
- Freeman, S.B.; Taft, L.F.; Dooley, K.J.; Allran, K.; Sherman, S.L.; Hassold, T.J.; Khoury, M.J.; Saker, D.M. Population-based study of congenital heart defects in Down syndrome. Am. J. Med. Genet. 1998, 80, 213–217. [Google Scholar] [CrossRef]
- Nyberg, D.A.; Souter, V.L.; El-Bastawissi, A.; Young, S.; Luthhardt, F.; Luthy, D.A. Isolated sonographic markers for detection of fetal Down syndrome in the second trimester of pregnancy. J. Ultrasound Med. 2001, 20, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Breathnach, F.M.; Malone, F.D.; Lambert-Messerlian, G.; Cuckle, H.S.; Porter, T.F.; Nyberg, D.A.; Comstock, C.H.; Saade, G.R.; Berkowitz, R.L.; Klugman, S.; et al. First- and second-trimester screening: Detection of aneuploidies other than Down syndrome. Obstet. Gynecol. 2007, 110, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Krantz, D.A.; Hallahan, T.W.; Macri, V.J.; Macri, J.N. Genetic sonography after first-trimester Down syndrome screening. Ultrasound Obstet. Gynecol. 2007, 29, 666–670. [Google Scholar] [CrossRef]
- Aagaard-Tillery, K.M.; Malone, F.D.; Nyberg, D.A.; Porter, T.F.; Cuckle, H.S.; Fuchs, K.; Sullivan, L.; Comstock, C.H.; Saade, G.R.; Eddleman, K.; et al. Role of second-trimester genetic sonography after Down syndrome screening. Obstet. Gynecol. 2009, 114, 1189–1196. [Google Scholar] [CrossRef]
- Yeo, L.; Guzman, E.R.; Day-Salvatore, D.; Walters, C.; Chavez, D.; Vintzileos, A.M. Prenatal detection of fetal trisomy 18 through abnormal sonographic features. J. Ultrasound Med. 2003, 22, 581–590. [Google Scholar] [CrossRef]
- DeVore, G.R. Second trimester ultrasonography may identify 77 to 97% of fetuses with trisomy 18. J. Ultrasound Med. 2000, 19, 565–576. [Google Scholar] [CrossRef]
- Snijders, R.J.; Shawa, L.; Nicolaides, K.H. Fetal choroid plexus cysts and trisomy 18: Assessment of risk based on ultrasound findings and maternal age. Prenat. Diagn. 1994, 14, 1119–1127. [Google Scholar] [CrossRef]
- Benacerraf, B.R.; Miller, W.A.; Frigoletto, F.D., Jr. Sonographic detection of fetuses with trisomies 13 and 18: Accuracy and limitations. Am. J. Obstet. Gynecol. 1988, 158, 404–409. [Google Scholar] [CrossRef]
- Lehman, C.D.; Nyberg, D.A.; Winter, T.C., 3rd; Kapur, R.P.; Resta, R.G.; Luthy, D.A. Trisomy 13 syndrome: Prenatal US findings in a review of 33 cases. Radiology 1995, 194, 217–222. [Google Scholar] [CrossRef]
- Jauniaux, E.; Brown, R.; Rodeck, C.; Nicolaides, K.H. Prenatal diagnosis of triploidy during the second trimester of pregnancy. Obstet. Gynecol. 1996, 88, 983–989. [Google Scholar] [CrossRef] [PubMed]
- Lugthart, M.A.; Horenblas, J.; Kleinrouweler, E.C.; Engels, M.; Knegt, A.C.; Huijsdens, K.; van Leeuwen, E.; Pajkrt, E. Prenatal sonographic features can accurately determine parental origin in triploid pregnancies. Prenat. Diagn. 2020, 40, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Mittal, T.K.; Vujanic, G.M.; Morrissey, B.M.; Jones, A. Triploidy: Antenatal sonographic features with post-mortem correlation. Prenat. Diagn. 1998, 18, 1253–1262. [Google Scholar] [CrossRef]
- Berglund, A.; Stochholm, K.; Gravholt, C.H. The epidemiology of sex chromosome abnormalities. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 202–215. [Google Scholar] [CrossRef]
- De Vigan, C.; Baena, N.; Cariati, E.; Clementi, M.; Stoll, C.; Group, E.W. Contribution of ultrasonographic examination to the prenatal detection of chromosomal abnormalities in 19 centres across Europe. Ann. Genet. 2001, 44, 209–217. [Google Scholar] [CrossRef]
- Reimers, R.; High, F.; Kremen, J.; Wilkins-Haug, L. Prenatal diagnosis of sex chromosome aneuploidy-What do we tell the prospective parents? Prenat. Diagn. 2023, 43, 250–260. [Google Scholar] [CrossRef]
- Papp, C.; Beke, A.; Mezei, G.; Szigeti, Z.; Ban, Z.; Papp, Z. Prenatal diagnosis of Turner syndrome: Report on 69 cases. J. Ultrasound Med. 2006, 25, 711–717. [Google Scholar] [CrossRef]
- Maisenbacher, M.K.; Merrion, K.; Pettersen, B.; Young, M.; Paik, K.; Iyengar, S.; Kareht, S.; Sigurjonsson, S.; Demko, Z.P.; Martin, K.A. Incidence of the 22q11.2 deletion in a large cohort of miscarriage samples. Mol. Cytogenet. 2017, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- McDonald-McGinn, D.M.; Hain, H.S.; Emanuel, B.S.; Zackai, E.H. 22q11.2 Deletion Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Goldmuntz, E.; Bassett, A.S.; Boot, E.; Marino, B.; Moldenhauer, J.S.; Oskarsdottir, S.; Putotto, C.; Rychik, J.; Schindewolf, E.; McDonald-McGinn, D.M.; et al. Prenatal cardiac findings and 22q11.2 deletion syndrome: Fetal detection and evaluation. Prenat. Diagn. 2024, 44, 804–814. [Google Scholar] [CrossRef]
- Chaoui, R.; Kalache, K.D.; Heling, K.S.; Tennstedt, C.; Bommer, C.; Korner, H. Absent or hypoplastic thymus on ultrasound: A marker for deletion 22q11.2 in fetal cardiac defects. Ultrasound Obstet. Gynecol. 2002, 20, 546–552. [Google Scholar] [CrossRef]
- Chaoui, R.; Heling, K.S.; Lopez, A.S.; Thiel, G.; Karl, K. The thymic-thoracic ratio in fetal heart defects: A simple way to identify fetuses at high risk for microdeletion 22q11. Ultrasound Obstet. Gynecol. 2011, 37, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Chaoui, R.; Heling, K.S.; Zhao, Y.; Sinkovskaya, E.; Abuhamad, A.; Karl, K. Dilated cavum septi pellucidi in fetuses with microdeletion 22q11. Prenat. Diagn. 2016, 36, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, A.; Wolf, C.; Chevy, F.; Benachi, A.; Dumez, Y.; Munnich, A.; Cormier-Daire, V. Antenatal manifestations of Smith-Lemli-Opitz (RSH) syndrome: A retrospective survey of 30 cases. Am. J. Med. Genet. A 2004, 124, 423–426. [Google Scholar] [CrossRef]
- Lin, A.E.; Ardinger, H.H.; Ardinger, R.H., Jr.; Cunniff, C.; Kelley, R.I. Cardiovascular malformations in Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. 1997, 68, 270–278. [Google Scholar] [CrossRef]
- Schoner, K.; Witsch-Baumgartner, M.; Behunova, J.; Petrovic, R.; Bald, R.; Kircher, S.G.; Ramaswamy, A.; Kluge, B.; Meyer-Wittkopf, M.; Schmitz, R.; et al. Smith-Lemli-Opitz syndrome—Fetal phenotypes with special reference to the syndrome-specific internal malformation pattern. Birth Defects Res. 2020, 112, 175–185. [Google Scholar] [CrossRef]
- Wellesley, D.; Dolk, H.; Boyd, P.A.; Greenlees, R.; Haeusler, M.; Nelen, V.; Garne, E.; Khoshnood, B.; Doray, B.; Rissmann, A.; et al. Rare chromosome abnormalities, prevalence and prenatal diagnosis rates from population-based congenital anomaly registers in Europe. Eur. J. Hum. Genet. 2012, 20, 521–526. [Google Scholar] [CrossRef]
- Lo, Y.M.; Tein, M.S.; Lau, T.K.; Haines, C.J.; Leung, T.N.; Poon, P.M.; Wainscoat, J.S.; Johnson, P.J.; Chang, A.M.; Hjelm, N.M. Quantitative analysis of fetal DNA in maternal plasma and serum: Implications for noninvasive prenatal diagnosis. Am. J. Hum. Genet. 1998, 62, 768–775. [Google Scholar] [CrossRef]
- Bianchi, D.W. Circulating fetal DNA: Its origin and diagnostic potential—A review. Placenta 2004, 25 (Suppl. A), S93–S101. [Google Scholar] [CrossRef]
- Miltoft, C.B.; Rode, L.; Bundgaard, J.R.; Johansen, P.; Tabor, A. Cell-Free Fetal DNA in the Early and Late First Trimester. Fetal Diagn. Ther. 2020, 47, 228–236. [Google Scholar] [CrossRef]
- Lo, Y.M.; Zhang, J.; Leung, T.N.; Lau, T.K.; Chang, A.M.; Hjelm, N.M. Rapid clearance of fetal DNA from maternal plasma. Am. J. Hum. Genet. 1999, 64, 218–224. [Google Scholar] [CrossRef]
- Everett, T.R.; Chitty, L.S. Cell-free fetal DNA: The new tool in fetal medicine. Ultrasound Obstet. Gynecol. 2015, 45, 499–507. [Google Scholar] [CrossRef] [PubMed]
- DiNonno, W.; Demko, Z.; Martin, K.; Billings, P.; Egbert, M.; Zneimer, S.; Keen-Kim, D.; Benn, P. Quality Assurance of Non-Invasive Prenatal Screening (NIPS) for Fetal Aneuploidy Using Positive Predictive Values as Outcome Measures. J. Clin. Med. 2019, 8, 1311. [Google Scholar] [CrossRef]
- American College of Obstetricians and Gynecologists; Society for Maternal-Fetal Medicine. Screening for Fetal Chromosomal Abnormalities: ACOG Practice Bulletin, Number 226. Obstet. Gynecol. 2020, 136, e48–e69. [Google Scholar] [CrossRef] [PubMed]
- Raymond, Y.; Fernando, S.; Menezes, M.; Mol, B.W.; McLennan, A.; da Silva Costa, F.; Hardy, T.; Rolnik, D.L. Placental, maternal, fetal, and technical origins of false-positive cell-free DNA screening results. Am. J. Obstet. Gynecol. 2024, 230, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Grati, F.R.; Ferreira, J.; Benn, P.; Izzi, C.; Verdi, F.; Vercellotti, E.; Dalpiaz, C.; D’Ajello, P.; Filippi, E.; Volpe, N.; et al. Outcomes in pregnancies with a confined placental mosaicism and implications for prenatal screening using cell-free DNA. Genet. Med. 2020, 22, 309–316. [Google Scholar] [CrossRef]
- Spinillo, S.L.; Farina, A.; Sotiriadis, A.; Pozzoni, M.; Giglio, S.; Papale, M.; Candiani, M.; Cavoretto, P.I. Pregnancy outcome of confined placental mosaicism: Meta-analysis of cohort studies. Am. J. Obstet. Gynecol. 2022, 227, 714–727.e1. [Google Scholar] [CrossRef]
- Smith, L.H.; Danielsen, B.; Allen, M.E.; Cress, R. Cancer associated with obstetric delivery: Results of linkage with the California cancer registry. Am. J. Obstet. Gynecol. 2003, 189, 1128–1135. [Google Scholar] [CrossRef]
- Niles, K.M.; Murji, A.; Chitayat, D. Prolonged duration of persistent cell-free fetal DNA from vanishing twin. Ultrasound Obstet. Gynecol. 2018, 52, 547–548. [Google Scholar] [CrossRef]
- Kantor, V.; Jelsema, R.; Xu, W.; DiNonno, W.; Young, K.; Demko, Z.; Benn, P. Non-invasive prenatal screening for fetal triploidy using single nucleotide polymorphism-based testing: Differential diagnosis and clinical management in cases showing an extra haplotype. Prenat. Diagn. 2022, 42, 994–999. [Google Scholar] [CrossRef]
- Soster, E.; Dyr, B.; Rafalko, J.; Almasri, E.; Cacheris, P. Positive cfDNA screening results for 22q11.2 deletion syndrome-Clinical and laboratory considerations. Front. Genet. 2023, 14, 1146669. [Google Scholar] [CrossRef]
- Zaninovic, L.; Baskovic, M.; Jezek, D.; Katusic Bojanac, A. Validity and Utility of Non-Invasive Prenatal Testing for Copy Number Variations and Microdeletions: A Systematic Review. J. Clin. Med. 2022, 11, 3350. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.; Paternoster, B.; Povarnitsyn, N.; Scotchman, E.; Chitty, L.; Chandler, N. Non-invasive prenatal diagnosis (NIPD): Current and emerging technologies. Extracell. Vesicles Circ. Nucl. Acids 2023, 4, 3–26. [Google Scholar] [CrossRef]
- Mohan, P.; Lemoine, J.; Trotter, C.; Rakova, I.; Billings, P.; Peacock, S.; Kao, C.Y.; Wang, Y.; Xia, F.; Eng, C.M.; et al. Clinical experience with non-invasive prenatal screening for single-gene disorders. Ultrasound Obstet. Gynecol. 2022, 59, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.R.; Hardisty, E.; Dotters-Katz, S.K.; Vora, N.L.; Kuller, J.A. Cell-Free DNA Screening: Complexities and Challenges of Clinical Implementation. Obstet. Gynecol. Surv. 2016, 71, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Benn, P.; Cuckle, H.; Pergament, E. Non-invasive prenatal testing for aneuploidy: Current status and future prospects. Ultrasound Obstet. Gynecol. 2013, 42, 15–33. [Google Scholar] [CrossRef]
- Boyle, B.; Morris, J.K.; McConkey, R.; Garne, E.; Loane, M.; Addor, M.C.; Gatt, M.; Haeusler, M.; Latos-Bielenska, A.; Lelong, N.; et al. Prevalence and risk of Down syndrome in monozygotic and dizygotic multiple pregnancies in Europe: Implications for prenatal screening. BJOG 2014, 121, 809–819; discussion 820. [Google Scholar] [CrossRef]
- Salomon, L.J.; Alfirevic, Z.; Audibert, F.; Kagan, K.O.; Paladini, D.; Yeo, G.; Raine-Fenning, N.; Committee, I.C.S. ISUOG updated consensus statement on the impact of cfDNA aneuploidy testing on screening policies and prenatal ultrasound practice. Ultrasound Obstet. Gynecol. 2017, 49, 815–816. [Google Scholar] [CrossRef]
- Gil, M.M.; Galeva, S.; Jani, J.; Konstantinidou, L.; Akolekar, R.; Plana, M.N.; Nicolaides, K.H. Screening for trisomies by cfDNA testing of maternal blood in twin pregnancy: Update of The Fetal Medicine Foundation results and meta-analysis. Ultrasound Obstet. Gynecol. 2019, 53, 734–742. [Google Scholar] [CrossRef]
- Wang, Y.; Li, S.; Wang, W.; Dong, Y.; Zhang, M.; Wang, X.; Yin, C. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol. Cytogenet. 2020, 13, 10. [Google Scholar] [CrossRef]
- Martin, K.A.; Samango-Sprouse, C.A.; Kantor, V.; Dhamankar, R.; Valenti, E.; Trefogli, M.T.; Balosbalos, I.; Lagrave, D.; Lyons, D.; Kao, C.; et al. Detection of maternal X chromosome abnormalities using single nucleotide polymorphism-based noninvasive prenatal testing. Am. J. Obstet. Gynecol. MFM 2020, 2, 100152. [Google Scholar] [CrossRef]
- Christiaens, L.; Chitty, L.S.; Langlois, S. Current controversies in prenatal diagnosis: Expanded NIPT that includes conditions other than trisomies 13, 18, and 21 should be offered. Prenat. Diagn. 2021, 41, 1316–1323. [Google Scholar] [CrossRef] [PubMed]
- Mackie, F.L.; Hemming, K.; Allen, S.; Morris, R.K.; Kilby, M.D. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: A systematic review and bivariate meta-analysis. BJOG 2017, 124, 32–46. [Google Scholar] [CrossRef] [PubMed]
- Dhamankar, R.; DiNonno, W.; Martin, K.A.; Demko, Z.P.; Gomez-Lobo, V. Fetal Sex Results of Noninvasive Prenatal Testing and Differences With Ultrasonography. Obstet. Gynecol. 2020, 135, 1198–1206. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Ellis, K.; Mayen, D.; Pertile, M.D.; Reimers, R.; Sun, L.; Vermeesch, J.; Vora, N.L.; Chitty, L.S. Position statement from the International Society for Prenatal Diagnosis on the use of non-invasive prenatal testing for the detection of fetal chromosomal conditions in singleton pregnancies. Prenat. Diagn. 2023, 43, 814–828. [Google Scholar] [CrossRef]
- Takoudes, T.; Hamar, B. Performance of non-invasive prenatal testing when fetal cell-free DNA is absent. Ultrasound Obstet. Gynecol. 2015, 45, 112. [Google Scholar] [CrossRef]
- Persson, F.; Prensky, L. Variability of “Reported Fetal Fraction” in Noninvasive Prenatal Screening (NIPS). Clin. Chem. 2021, 67, 863–866. [Google Scholar] [CrossRef]
- Benn, P.; Zhang, J.; Lyons, D.; Xu, W.; Leonard, S.; Demko, Z. Accuracy of fetal fraction measurements in a single-nucleotide polymorphism-based noninvasive prenatal test. Prenat. Diagn. 2024, 44, 1218–1224. [Google Scholar] [CrossRef]
- Becking, E.C.; Linthorst, J.; Patton, S.; Gutowska-Ding, W.; Goodall, R.; Khawaja, F.; Morgan, F.; Deans, Z.; Chitty, L.S.; Bekker, M.N.; et al. Variability in Fetal Fraction Estimation: Comparing Fetal Fractions Reported by Noninvasive Prenatal Testing Providers Globally. Clin. Chem. 2023, 69, 160–167. [Google Scholar] [CrossRef]
- Hedriana, H.; Martin, K.; Saltzman, D.; Billings, P.; Demko, Z.; Benn, P. Cell-free DNA fetal fraction in twin gestations in single-nucleotide polymorphism-based noninvasive prenatal screening. Prenat. Diagn. 2020, 40, 179–184. [Google Scholar] [CrossRef]
- Ryan, A.; Hunkapiller, N.; Banjevic, M.; Vankayalapati, N.; Fong, N.; Jinnett, K.N.; Demko, Z.; Zimmermann, B.; Sigurjonsson, S.; Gross, S.J.; et al. Validation of an Enhanced Version of a Single-Nucleotide Polymorphism-Based Noninvasive Prenatal Test for Detection of Fetal Aneuploidies. Fetal Diagn. Ther. 2016, 40, 219–223. [Google Scholar] [CrossRef]
- Goldring, G.; Trotter, C.; Meltzer, J.T.; Souter, V.; Pais, L.; DiNonno, W.; Xu, W.; Weitzel, J.N.; Vora, N.L. Maternal Malignancy After Atypical Findings on Single-Nucleotide Polymorphism-Based Prenatal Cell-Free DNA Screening. Obstet. Gynecol. 2023, 141, 791–800. [Google Scholar] [CrossRef] [PubMed]
- Wapner, R.J.; Babiarz, J.E.; Levy, B.; Stosic, M.; Zimmermann, B.; Sigurjonsson, S.; Wayham, N.; Ryan, A.; Banjevic, M.; Lacroute, P.; et al. Expanding the scope of noninvasive prenatal testing: Detection of fetal microdeletion syndromes. Am. J. Obstet. Gynecol. 2015, 212, 332.e1–332.e9. [Google Scholar] [CrossRef] [PubMed]
- Grati, F.R.; Molina Gomes, D.; Ferreira, J.C.; Dupont, C.; Alesi, V.; Gouas, L.; Horelli-Kuitunen, N.; Choy, K.W.; Garcia-Herrero, S.; de la Vega, A.G.; et al. Prevalence of recurrent pathogenic microdeletions and microduplications in over 9500 pregnancies. Prenat. Diagn. 2015, 35, 801–809. [Google Scholar] [CrossRef]
- Dar, P.; Jacobsson, B.; Clifton, R.; Egbert, M.; Malone, F.; Wapner, R.J.; Roman, A.S.; Khalil, A.; Faro, R.; Madankumar, R.; et al. Cell-free DNA screening for prenatal detection of 22q11.2 deletion syndrome. Am. J. Obstet. Gynecol. 2022, 227, 79.e1–79.e11. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Saucier, J.B.; Feng, Y.; Jiang, Y.; Sinson, J.; McCombs, A.K.; Schmitt, E.S.; Peacock, S.; Chen, S.; et al. Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat. Med. 2019, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Sapantzoglou, I.; Giourga, M.; Pergialiotis, V.; Mantzioros, R.; Daskalaki, M.A.; Papageorgiou, D.; Antsaklis, P.; Theodora, M.; Thomakos, N.; Daskalakis, G. Low fetal fraction and adverse pregnancy outcomes- systematic review of the literature and metanalysis. Arch. Gynecol. Obstet. 2024, 310, 1343–1354. [Google Scholar] [CrossRef]
- Khalil, A.; Bellesia, G.; Norton, M.E.; Jacobsson, B.; Haeri, S.; Egbert, M.; Malone, F.D.; Wapner, R.J.; Roman, A.; Faro, R.; et al. The role of cell-free DNA biomarkers and patient data in the early prediction of preeclampsia: An artificial intelligence model. Am. J. Obstet. Gynecol. 2024, 231, 554.e1–554.e18. [Google Scholar] [CrossRef]
- Mattar, C.N.Z.; Chan, J.K.Y.; Choolani, M. Gene modification therapies for hereditary diseases in the fetus. Prenat. Diagn. 2023, 43, 674–686. [Google Scholar] [CrossRef]
Screening Method | Detection Rate (%) | False Positive Rate (%) |
---|---|---|
Maternal Age | ||
Maternal age above 35 (38) years | 50 (30) | 20 (5) |
Second-Trimester Tests | ||
Double test: Maternal serum AFP, free β-hCG at 15–18(20) weeks | 65 (60) | 5 |
Triple test: Maternal serum AFP, free β-hCG (total-hCG), uE3 at 15–18(20) weeks | 70 (65) | 5 |
Quadruple test: Maternal serum AFP, free β-hCG (totalHCG), uE3, Inh at 15–18(20) weeks | 75 (70) | 5 |
Genetic sonogram at 14–24 weeks (optimal 16–20 weeks) | 65–75 | 4–15 |
First-Trimester Tests | ||
Nuchal translucency (NT) at 11–14 weeks | 80 | 5 |
Maternal serum PAPP-A and free β-hCG at 10–14 weeks | 65 | 5 |
Combined test (NT, PAPP-A, and free β-hCG) at 11–14 weeks | 90 | 5 |
Combined test with nasal bone, ductus venosus, or tricuspid flow at 11–14 weeks | 93–96 | 2.5 |
NIPT (cfDNA) from 10 weeks | 99.7 | 0.04 |
Tests combining first- and second-trimester methods | ||
Fully integrated test (NT, PAPP-A at 12 weeks + quadruple test at 15–20 weeks) | 96 | 5 |
Fully integrated test (PAPP-A at 12 weeks + quadruple test at 15–20 weeks) | 88 | 5 |
Maternal Age (years) | Risk of Trisomy 21 (1 in X) | Risk of Any Chromosomal Abnormality (1 in X) |
---|---|---|
20 | 1667 | 526 |
25 | 1.25 | 476 |
30 | 952 | 384 |
35 | 385 | 192 |
40 | 106 | 66 |
45 | 30 | 21 |
49 | 11 | 8 |
Aneuploidy | NT | CRL | Heart Rate | Free β-hCG | PAPP-A (MoM) |
---|---|---|---|---|---|
Trisomy 21 | ⇧ | ⇔ | ⇔ | >2 MoM | <0.5 MoM |
Trisomy 18 | ⇧ | ⇩ | ⇩ | <0.2 MoM | <0.2 MoM |
Trisomy 13 | ⇧ | ⇔ | ⇧ | <0.5 MoM | <0.3 MoM |
Turner syndrome | ⇧⇧/⇔ | ⇔ | ⇧ | ⇔ | <0.5 |
Triploidy | ⇩ | ⇩ | ⇩ | <0.1 MoM/>8 MoM | <0.1 MoM/⇔ |
Marker | LR+ | LR− | LRc |
---|---|---|---|
Intracardiac echogenic focus | 5.8 | 0.8 | 0.95 |
Ventriculomegaly | 27.3 | 0.9 | 3.81 |
Nuchal fold thickness > 6 mm | 23.3 | 0.8 | 3.79 |
Echogenic bowel | 11.4 | 0.9 | 1.65 |
Mild hydronephrosis | 7.6 | 0.9 | 1.08 |
Short humerus | 4.8 | 0.7 | 0.78 |
Short femur | 3.7 | 0.8 | 0.61 |
Aberrant right subclavian artery | 21.5 | 0.7 | 3.94 |
Absent/Hypoplastic nasal bone | 23.3 | 0.5 | 6.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frisova, V. Prenatal Screening for Chromosomal Defects. Reprod. Med. 2025, 6, 15. https://doi.org/10.3390/reprodmed6020015
Frisova V. Prenatal Screening for Chromosomal Defects. Reproductive Medicine. 2025; 6(2):15. https://doi.org/10.3390/reprodmed6020015
Chicago/Turabian StyleFrisova, Veronika. 2025. "Prenatal Screening for Chromosomal Defects" Reproductive Medicine 6, no. 2: 15. https://doi.org/10.3390/reprodmed6020015
APA StyleFrisova, V. (2025). Prenatal Screening for Chromosomal Defects. Reproductive Medicine, 6(2), 15. https://doi.org/10.3390/reprodmed6020015