A Scoping Review: Risk of Autism in Children Born from Assisted Reproductive Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Identification
2.2. Inclusion and Exclusion Criteria
3. Results
3.1. Assisted Reproductive Technology
3.2. In Vitro Fertilization
3.3. Intracytoplasmic Sperm Injection
3.4. Fresh vs. Frozen Embryo Transfer
4. Discussion
4.1. Limitations
4.2. Further Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ICD-10 Version:2019. Available online: https://icd.who.int/browse10/2019/en#/N97 (accessed on 12 November 2023).
- European Society of Human Reproduction and Embryology (ESHRE). Available online: https://www.eshre.eu/Europe/Factsheets-and-infographics (accessed on 12 November 2023).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nchs/nsfg/key_statistics/i-keystat.htm#impaired (accessed on 12 November 2023).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/nchs/nsfg/key_statistics/i.htm (accessed on 12 November 2023).
- Matteo, M. Assisted reproductive technology. In Practical Clinical Andrology; Bettocchi, C., Busetto, G.M., Carrieri, G., Cormio, L., Eds.; Springer: Cham, Switzerland, 2022; pp. 237–250. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/art/whatis.html (accessed on 12 November 2019).
- American Psychiatric Association. DSM-5 Task Force. In Diagnostic and Statistical Manual of Mental Disorders: DSM-5TM, 5th ed.; American Psychiatric Publishing, Inc.: Washington, DC, USA, 2013. [Google Scholar]
- Zeidan, J.; Fombonne, E.; Scorah, J.; Ibrahim, A.; Durkin, M.S.; Saxena, S.; Yusuf, A.; Shih, A.; Elsabbagh, M. Global prevalence of autism: A systematic review update. Autism Res. 2022, 15, 778–790. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/autism/data-research/?CDC_AAref_Val=https://www.cdc.gov/ncbddd/autism/data.html (accessed on 12 November 2023).
- Hyman, S.L.; Levy, S.E.; Myers, S.M.; Council on Children with Disabilities, Section on Developmental and Behavioral Pediatrics. Identification, evaluation, and management of children with autism spectrum disorder. Pediatrics 2020, 145, e20193447. [Google Scholar] [CrossRef] [PubMed]
- Emberti Gialloreti, L.; Mazzone, L.; Benvenuto, A.; Fasano, A.; Alcon, A.G.; Kraneveld, A.; Moavero, R.; Raz, R.; Riccio, M.P.; Siracusano, M.; et al. Risk and protective environmental factors associated with autism spectrum disorder: Evidence-based principles and recommendations. J. Clin. Med. 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Davidovitch, M.; Chodick, G.; Shalev, V.; Eisenberg, V.H.; Dan, U.; Reichenberg, A.; Sandin, S.; Levine, S.Z. Infertility treatments during pregnancy and the risk of autism spectrum disorder in the offspring. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Kong, L.; Piltonen, T.T.; Gissler, M.; Lavebratt, C. Association of polycystic ovary syndrome or anovulatory infertility with offspring psychiatric and mild neurodevelopmental disorders: A Finnish population-based cohort study. Hum. Reprod. 2020, 35, 2336–2347. [Google Scholar] [CrossRef]
- Berridge, M.J. Vitamin D deficiency: Infertility and neurodevelopmental diseases (attention deficit hyperactivity disorder, autism, and schizophrenia). Am. J. Physiol. Cell Physiol. 2018, 314, C135–C151. [Google Scholar] [CrossRef]
- Velez, M.P.; Dayan, N.; Shellenberger, J.; Pudwell, J.; Kapoor, D.; Vigod, S.N.; Ray, J.G. Infertility and Risk of Autism Spectrum Disorder in Children. JAMA Netw. Open 2023, 6, e2343954. [Google Scholar] [CrossRef]
- Fine, A.; Dayan, N.; Djerboua, M.; Pudwell, J.; Fell, D.B.; Vigod, S.N.; Ray, J.G.; Velez, M.P. Attention-deficit hyperactivity disorder in children born to mothers with infertility: A population-based cohort study. Hum. Reprod. 2022, 37, 2126–2134. [Google Scholar] [CrossRef]
- Wright, V.C.; Schieve, L.A.; Reynolds, M.A.; Jeng, G. Assisted reproductive technology surveillance—United States, 2000. MMWR Surveill. Summ. 2003, 52, 1–16. [Google Scholar]
- Schieve, L.A.; Ferre, C.; Peterson, H.B.; Macaluso, M.; Reynolds, M.A.; Wright, V.C. Perinatal outcome among singleton infants conceived through assisted reproductive technology in the United States. Obstet. Gynecol. 2004, 103, 1144–1153. [Google Scholar] [CrossRef]
- Declercq, E.; Luke, B.; Belanoff, C.; Cabral, H.; Diop, H.; Gopal, D.; Hoang, L.; Kotelchuck, M.; Stern, J.E.; Hornstein, M.D. Perinatal outcomes associated with assisted reproductive technology: The Massachusetts Outcomes Study of Assisted Reproductive Technologies (MOSART). Fertil. Steril. 2015, 103, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Luke, B.; Stern, J.E.; Kotelchuck, M.; Declercq, E.R.; Anderka, M.; Diop, H. Birth Outcomes by Infertility Treatment: Analyses of the Population-Based Cohort: Massachusetts Outcomes Study of Assisted Reproductive Technologies (MOSART). J. Reprod. Med. 2016, 61, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Manning, S.E.; Davin, C.A.; Barfield, W.D.; Kotelchuck, M.; Clements, K.; Diop, H.; Osbahr, T.; Smith, L.A. Early diagnoses of autism spectrum disorders in Massachusetts birth cohorts, 2001–2005. Pediatrics 2011, 127, 1043–1051. [Google Scholar] [CrossRef] [PubMed]
- Pastizzo, L. What Is Google Scholar? Jackson County Library District: Jackson County, OR, USA, 2021. Available online: https://jcls.org/2021/08/18/what-is-google-scholar/ (accessed on 11 August 2024).
- American Pregnancy Association. Available online: https://americanpregnancy.org/getting-pregnant/infertility/gamete-intrafallopian-tube-transfer/ (accessed on 11 November 2023).
- Tanveer, A.; Malviya, N.; Yadav, D. Omics approaches in in vitro fertilization. In Omics Technologies and Bio-Engineering: Towards Improving Quality of Life, 1st ed.; Barh, D., Azevedo, V., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 559–575. [Google Scholar] [CrossRef]
- Leeton, J.; Rogers, P.; Caro, C.; Healy, D.; Yates, C. A controlled study between the use of gamete intrafallopian transfer (GIFT) and in vitro fertilization and embryo transfer in the management of idiopathic and male infertility. Fertil. Steril. 1987, 48, 605–607. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, M.; Beckett, V.A.; Marchant, S.; Kinis, A.; Serhal, P. Gamete intra-Fallopian transfer or in-vitro fertilization after failed ovarian stimulation and intrauterine insemination in unexplained infertility? Hum. Reprod. 1995, 10, 2023–2026. [Google Scholar] [CrossRef]
- Briana, D.D.; Malamitsi-Puchner, A. Intracytoplasmic sperm injection and fetal origins of autism spectrum disorder: An intriguing, though controversial association. J. Matern. Fetal Neonatal Med. 2022, 35, 799–805. [Google Scholar] [CrossRef]
- Andreadou, M.T.; Katsaras, G.N.; Talimtzi, P.; Doxani, C.; Zintzaras, E.; Stefanidis, I. Association of assisted reproductive technology with autism spectrum disorder in the offspring: An updated systematic review and meta-analysis. Eur. J. Pediatr. 2021, 180, 2741–2755. [Google Scholar] [CrossRef]
- Liu, L.; Gao, J.; He, X.; Cai, Y.; Wang, L.; Fan, X. Association between assisted reproductive technology and the risk of autism spectrum disorders in the offspring: A meta-analysis. Sci. Rep. 2017, 7, 46207. [Google Scholar] [CrossRef]
- Djuwantono, T.; Aviani, J.K.; Permadi, W.; Achmad, T.H.; Halim, D. Risk of neurodevelopmental disorders in children born from different ART treatments: A systematic review and meta-analysis. J. Neurodev. Disord. 2020, 12, 33. [Google Scholar] [CrossRef]
- Gullo, G.; Scaglione, M.; Cucinella, G.; Perino, A.; Chiantera, V.; D’Anna, R.; Laganà, A.S.; Buzzaccarini, G. Impact of assisted reproduction techniques on the neuro-psycho-motor outcome of newborns: A critical appraisal. J. Obstet. Gynaecol. 2022, 42, 2583–2587. [Google Scholar] [CrossRef]
- Källén, B. The risk of neurodisability and other long-term outcomes for infants born following ART. Semin. Fetal Neonatal Med. 2014, 19, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Saxena, P. Assisted reproductive technology and its association with autism in children. Fertil. Sci. Res. 2021, 8, 20–24. [Google Scholar] [CrossRef]
- Bergh, C.; Wennerholm, U.B. Long-term health of children conceived after assisted reproductive technology. Ups. J. Med. Sci. 2020, 125, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mannan, O.; Sutcliffe, A. I was born following ART: How will I get on at school? Semin. Fetal Neonatal Med. 2014, 19, 245–249. [Google Scholar] [CrossRef]
- Farhi, A.; Glasser, S.; Gabis, L.V.; Hirsh-Yechezkel, G.; Frank, S.; Brinton, L.; Scoccia, B.; Ron-El, R.; Orvieto, R.; Lerner-Geva, L. How Are They Doing? Neurodevelopmental Outcomes at School Age of Children Born Following Assisted Reproductive Treatments. J. Child Neurol. 2021, 36, 262–271. [Google Scholar] [CrossRef]
- Zhan, Q.T.; Pan, P.P.; Xu, X.R.; Lou, H.Y.; Lou, Y.Y.; Jin, F. An overview of studies on psychological well-being in children born following assisted reproductive technologies. J. Zhejiang Univ. Sci. B 2013, 14, 947–960. [Google Scholar] [CrossRef]
- Conti, E.; Mazzotti, S.; Calderoni, S.; Saviozzi, I.; Guzzetta, A. Are children born after assisted reproductive technology at increased risk of autism spectrum disorders? A systematic review. Hum. Reprod. 2013, 28, 3316–3327. [Google Scholar] [CrossRef]
- Perros, P.; Psarris, A.; Antsaklis, P.; Theodora, M.; Syndos, M.; Koutras, A.; Ntounis, T.; Fasoulakis, Z.; Rodolakis, A.; Daskalakis, G. Neurodevelopmental Outcomes of Pregnancies Resulting from Assisted Reproduction: A Review of the Literature. Children 2022, 9, 1511. [Google Scholar] [CrossRef]
- Lyall, K.; Baker, A.; Hertz-Picciotto, I.; Walker, C.K. Infertility and its treatments in association with autism spectrum disorders: A review and results from the CHARGE study. Int. J. Environ. Res. Public Health 2013, 10, 3715–3734. [Google Scholar] [CrossRef]
- Lung, F.W.; Chiang, T.L.; Lin, S.J.; Lee, M.C.; Shu, B.C. Assisted reproductive technology has no association with autism spectrum disorders: The Taiwan Birth Cohort Study. Autism 2018, 22, 377–384. [Google Scholar] [CrossRef]
- Jenabi, E.; Seyedi, M.; Hamzehei, R.; Bashirian, S.; Rezaei, M.; Razjouyan, K.; Khazaei, S. Association between assisted reproductive technology and autism spectrum disorders in Iran: A case-control study. Clin. Exp. Pediatr. 2020, 63, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.; Wenegrat, J.; Rettew, D.; Althoff, R.; Bernier, R. No increase in autism-associated genetic events in children conceived by assisted reproduction. Fertil. Steril. 2014, 102, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Schieve, L.A.; Drews-Botsch, C.; Harris, S.; Newschaffer, C.; Daniels, J.; DiGuiseppi, C.; Croen, L.A.; Windham, G.C. Maternal and Paternal Infertility Disorders and Treatments and Autism Spectrum Disorder: Findings from the Study to Explore Early Development. J. Autism Dev. Disord. 2017, 47, 3994–4005. [Google Scholar] [CrossRef] [PubMed]
- Diop, H.; Cabral, H.; Gopal, D.; Cui, X.; Stern, J.E.; Kotelchuck, M. Early Autism Spectrum Disorders in Children Born to Fertile, Subfertile, and ART-Treated Women. Matern. Child Health J. 2019, 23, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Jenabi, E.; Bashirian, S.; Khazaei, S.; Farhadi Nasab, A.; Maleki, A. The Association between Assisted Reproductive Technology and the Risk of Autism Spectrum Disorders among Offspring: A Meta-analysis. Curr. Pediatr. Rev. 2022, 19, 83–89. [Google Scholar] [CrossRef]
- Magdalena, H.; Beata, K.; Paprocka, J.; Agnieszka, K.G.; Szczepara-Fabian, M.; Buczek, A.; Ewa, E.W. Preconception Risk Factors for Autism Spectrum Disorder—A Pilot Study. Brain Sci. 2020, 10, 293. [Google Scholar] [CrossRef]
- Schieve, L.A.; Rice, C.; Devine, O.; Maenner, M.J.; Lee, L.C.; Fitzgerald, R.; Wingate, M.S.; Schendel, D.; Pettygrove, S.; van Naarden Braun, K.; et al. Have secular changes in perinatal risk factors contributed to the recent autism prevalence increase? Development and application of a mathematical assessment model. Ann. Epidemiol. 2011, 21, 930–945. [Google Scholar] [CrossRef]
- Yeung, E.H.; Sundaram, R.; Bell, E.M.; Druschel, C.; Kus, C.; Ghassabian, A.; Bello, S.; Xie, Y.; Buck Louis, G.M. Examining Infertility Treatment and Early Childhood Development in the Upstate KIDS Study. JAMA Pediatr. 2016, 170, 251–258. [Google Scholar] [CrossRef]
- Lyall, K.; Pauls, D.L.; Spiegelman, D.; Santangelo, S.L.; Ascherio, A. Fertility therapies, infertility and autism spectrum disorders in the Nurses’ Health Study II. Paediatr. Perinat. Epidemiol. 2012, 26, 361–372. [Google Scholar] [CrossRef]
- Schieve, L.A.; Fountain, C.; Boulet, S.L.; Yeargin-Allsopp, M.; Kissin, D.M.; Jamieson, D.J.; Rice, C.; Bearman, P. Does Autism Diagnosis Age or Symptom Severity Differ Among Children According to Whether Assisted Reproductive Technology was Used to Achieve Pregnancy? J. Autism Dev. Disord. 2015, 45, 2991–3003. [Google Scholar] [CrossRef]
- Barbuscia, A.; Mills, M.C. Cognitive development in children up to age 11 years born after ART-a longitudinal cohort study. Hum. Reprod. 2017, 32, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Maimburg, R.D.; Vaeth, M. Do children born after assisted conception have less risk of developing infantile autism? Hum. Reprod. 2007, 22, 1841–1843. [Google Scholar] [CrossRef] [PubMed]
- Vui, L.T.; Duc, D.M.; Quynh, C.T.T.; Tuan, D.K.; Huong, N.M.; Thanh, N.T.M.; Hung, N.M.; Minh, H.V.; Ha, B.T.T. Ante-, Peri-, and Neonatal Factors Associated with Autism Spectrum Disorders in Vietnam: A Population-Based Cross-Sectional Survey. Iran J. Public Health 2023, 52, 950–959. [Google Scholar] [CrossRef] [PubMed]
- Fountain, C.; Zhang, Y.; Kissin, D.M.; Schieve, L.A.; Jamieson, D.J.; Rice, C.; Bearman, P. Association between assisted reproductive technology conception and autism in California, 1997 2007. Am. J. Public Health 2015, 105, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Rönö, K.; Rissanen, E.; Bergh, C.; Wennerholm, U.B.; Opdahl, S.; Romundstad, L.B.; Henningsen, A.A.; Spangmose, A.L.; Pinborg, A.; Gissler, M.; et al. The neurodevelopmental morbidity of children born after assisted reproductive technology: A Nordic register study from the Committee of Nordic Assisted Reproductive Technology and Safety group. Fertil. Steril. 2022, 117, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Nygren, K.G.; Iliadou, A.; Hultman, C.M.; Reichenberg, A. Autism and mental retardation among offspring born after in vitro fertilization. JAMA 2013, 310, 75–84. [Google Scholar] [CrossRef]
- Hart, R.; Norman, R.J. The longer-term health outcomes for children born as a result of IVF treatment. Part II—Mental health and development outcomes. Hum. Reprod. Update 2013, 19, 244–250. [Google Scholar] [CrossRef]
- Hediger, M.L.; Bell, E.M.; Druschel, C.M.; Buck Louis, G.M. Assisted reproductive technologies and children’s neurodevelopmental outcomes. Fertil. Steril. 2013, 99, 311–317. [Google Scholar] [CrossRef]
- Graham, M.E.; Jelin, A.; Hoon, A.H., Jr.; Wilms Floet, A.M.; Levey, E.; Graham, E.M. Assisted reproductive technology: Short- and long-term outcomes. Dev. Med. Child Neurol. 2023, 65, 38–49. [Google Scholar] [CrossRef]
- Zandstra, H.; Smits, L.J.M.; van Kuijk, S.M.J.; van Golde, R.J.T.; Evers, J.L.H.; Dumoulin, J.C.M.; van Montfoort, A.P.A. No effect of IVF culture medium on cognitive development of 9-year-old children. Hum. Reprod. Open 2018, 2018, hoy018. [Google Scholar] [CrossRef]
- Robinson, S.L.; Parikh, T.; Lin, T.; Bell, E.M.; Heisler, E.; Park, H.; Kus, C.; Stern, J.E.; Yeung, E.H. Infertility treatment and autism risk using the Modified Checklist for Autism in Toddlers (M-CHAT). Hum. Reprod. 2020, 35, 684–693. [Google Scholar] [CrossRef] [PubMed]
- Van Voorhis, B.J. Clinical practice. In vitro fertilization. N. Engl. J. Med. 2007, 356, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, A.A.; Stafinski, T.; Motan, T.; Klein, K.; Menon, D. Assisted reproductive technologies (ARTs): Evaluation of evidence to support public policy development. Reprod. Health 2014, 11, 76. [Google Scholar] [CrossRef] [PubMed]
- McGovern, P.G.; Llorens, A.J.; Skurnick, J.H.; Weiss, G.; Goldsmith, L.T. Increased risk of preterm birth in singleton pregnancies resulting from in vitro fertilization-embryo transfer or gamete intrafallopian transfer: A meta-analysis. Fertil. Steril. 2004, 82, 1514–1520. [Google Scholar] [CrossRef] [PubMed]
- Schieve, L.A.; Meikle, S.F.; Ferre, C.; Peterson, H.B.; Jeng, G.; Wilcox, L.S. Low and very low birth weight in infants conceived with use of assisted reproductive technology. N. Engl. J. Med. 2002, 346, 731–737. [Google Scholar] [CrossRef]
- Wang, Y.A.; Sullivan, E.A.; Black, D.; Dean, J.; Bryant, J.; Chapman, M. Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil. Steril. 2005, 83, 1650–1658. [Google Scholar] [CrossRef]
- Helmerhorst, F.M.; Perquin, D.A.; Donker, D.; Keirse, M.J. Perinatal outcome of singletons and twins after assisted conception: A systematic review of controlled studies. BMJ 2004, 328, 261. [Google Scholar] [CrossRef]
- Jackson, R.A.; Gibson, K.A.; Wu, Y.W.; Croughan, M.S. Perinatal outcomes in singletons following in vitro fertilization: A meta-analysis. Obstet. Gynecol. 2004, 103, 551–563. [Google Scholar] [CrossRef]
- Hansen, M.; Bower, C.; Milne, E.; de Klerk, N.; Kurinczuk, J.J. Assisted reproductive technologies and the risk of birth defects—A systematic review. Hum. Reprod. 2005, 20, 328–338. [Google Scholar] [CrossRef]
- Rimm, A.A.; Katayama, A.C.; Diaz, M.; Katayama, K.P. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J. Assist. Reprod. Genet. 2004, 21, 437–443. [Google Scholar] [CrossRef]
- Wilkins-Haug, L. Assisted reproductive technology, congenital malformations, and epigenetic disease. Clin. Obstet. Gynecol. 2008, 51, 96–105. [Google Scholar] [CrossRef] [PubMed]
- International Committee for Monitoring Assisted Reproductive Technology; Adamson, G.D.; de Mouzon, J.; Lancaster, P.; Nygren, K.G.; Sullivan, E.; Zegers-Hochschild, F. World collaborative report on in vitro fertilization, 2000. Fertil. Steril. 2006, 85, 1586–1622. [Google Scholar] [CrossRef] [PubMed]
- Basatemur, E.; Sutcliffe, A. Follow-up of children born after ART. Placenta 2008, 29, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, A.G.; Ludwig, M. Outcome of assisted reproduction. Lancet 2007, 370, 351–359. [Google Scholar] [CrossRef] [PubMed]
- European IVF-Monitoring Consortium (EIM) for the European Society of Human Reproduction and Embryology (ESHRE); Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; et al. ART in Europe, 2017: Results generated from European registries by ESHRE. Hum. Reprod. Open 2021, 2021, hoab026. [Google Scholar] [CrossRef]
- Sunderam, S.; Kissin, D.M.; Zhang, Y.; Folger, S.G.; Boulet, S.L.; Warner, L.; Callaghan, W.M.; Barfield, W.D. Assisted Reproductive Technology Surveillance—United States, 2016. MMWR Surveill. Summ. 2019, 68, 1–23. [Google Scholar] [CrossRef]
- Sullivan-Pyke, C.S.; Senapati, S.; Mainigi, M.A.; Barnhart, K.T. In Vitro fertilization and adverse obstetric and perinatal outcomes. Semin. Perinatol. 2017, 41, 345–353. [Google Scholar] [CrossRef]
- Lehti, V.; Brown, A.S.; Gissler, M.; Rihko, M.; Suominen, A.; Sourander, A. Autism spectrum disorders in IVF children: A national case-control study in Finland. Hum. Reprod. 2013, 28, 812–818. [Google Scholar] [CrossRef]
- Al-Hathlol, K.; Al-Obaid, O.M.; Al-Gholaiqa, T.S.; Al-Hathlol, B.; Abdulaal, A.E.; Al-Hajress, R.I.; Al-Joufi, F.A.; Al-Hassan, N.F.; Al-Otaibi, A.G. School performance and long-term outcomes of very preterm children conceived via in vitro fertilization. JBRA Assist. Reprod. 2020, 24, 61–65. [Google Scholar] [CrossRef]
- Cheung, S.; Neri, Q.V.; Squires, J.; Rosenwaks, Z.; Palermo, G.D. Assessing the cognitive and behavioral development of 3-year-old children born from fathers with severe male infertility. Am. J. Obstet. Gynecol. 2021, 224, 508.e1–508.e11. [Google Scholar] [CrossRef]
- Hvidtjørn, D.; Grove, J.; Schendel, D.; Schieve, L.A.; Sværke, C.; Ernst, E.; Thorsen, P. Risk of autism spectrum disorders in children born after assisted conception: A population-based follow-up study. J. Epidemiol. Community Health 2011, 65, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Bay, B.; Mortensen, E.L.; Hvidtjørn, D.; Kesmodel, U.S. Fertility treatment and risk of childhood and adolescent mental disorders: Register based cohort study. BMJ 2013, 347, f3978. [Google Scholar] [CrossRef]
- Berrada, H.; Chebli, H.; Kisra, H. Autism spectrum disorder comorbid with gilles de la tourette syndrome in a child of in vitro fertilization: About a case and a review of the literature. SAS J. Med. 2022, 8, 744–748. [Google Scholar] [CrossRef]
- Lo, H.; Weng, S.F.; Tsai, E.M. Neurodevelopmental Disorders in Offspring Conceived via In Vitro Fertilization vs Intracytoplasmic Sperm Injection. JAMA Netw. Open 2022, 5, e2248141. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.D. Genetic risks of intracytoplasmic sperm injection in the treatment of male infertility: Recommendations for genetic counseling and screening. Fertil. Steril. 1998, 7, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Knoester, M.; Helmerhorst, F.M.; van der Westerlaken, L.A.; Walther, F.J.; Veen, S.; Leiden Artificial Reproductive Techniques Follow-up Project (L-art-FUP). Matched follow-up study of 5 8-year-old ICSI singletons: Child behaviour, parenting stress and child (health-related) quality of life. Hum. Reprod. 2007, 22, 3098–3107. [Google Scholar] [CrossRef]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef]
- Hvidtjørn, D.; Schieve, L.; Schendel, D.; Jacobsson, B.; Svaerke, C.; Thorsen, P. Cerebral palsy, autism spectrum disorders, and developmental delay in children born after assisted conception: A systematic review and meta-analysis. Arch. Pediatr. Adolesc. Med. 2009, 163, 72–83. [Google Scholar] [CrossRef]
- Kissin, D.M.; Zhang, Y.; Boulet, S.L.; Fountain, C.; Bearman, P.; Schieve, L.; Yeargin-Allsopp, M.; Jamieson, D.J. Association of assisted reproductive technology (ART) treatment and parental infertility diagnosis with autism in ART-conceived children. Hum. Reprod. 2015, 30, 454–465. [Google Scholar] [CrossRef]
- Rumbold, A.R.; Sevoyan, A.; Oswald, T.K.; Fernandez, R.C.; Davies, M.J.; Moore, V.M. Impact of male factor infertility on offspring health and development. Fertil. Steril. 2019, 111, 1047–1053. [Google Scholar] [CrossRef]
- Meijerink, A.M.; Ramos, L.; Janssen, A.J.; Maas-van Schaaijk, N.M.; Meissner, A.; Repping, S.; Mochtar, M.H.; Braat, D.D.; Fleischer, K. Behavioral, cognitive, and motor performance and physical development of five-year-old children who were born after intracytoplasmic sperm injection with the use of testicular sperm. Fertil. Steril. 2016, 106, 1673–1682.e5. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, M.; Yan, G.; Zhao, S. DNA Methylation Differences Between Zona Pellucida-Bound and Manually Selected Spermatozoa Are Associated with Autism Susceptibility. Front. Endocrinol. 2021, 12, 774260. [Google Scholar] [CrossRef] [PubMed]
- Catford, S.R.; McLachlan, R.I.; O’Bryan, M.K.; Halliday, J.L. Long-term follow-up of intra-cytoplasmic sperm injection-conceived offspring compared with in vitro fertilization-conceived offspring: A systematic review of health outcomes beyond the neonatal period. Andrology 2017, 5, 610–621. [Google Scholar] [CrossRef]
- Feichtinger, W.; Obruca, A.; Brunner, M. Sex chromosomal abnormalities and intracytoplasmic sperm injection. Lancet 1995, 346, 1566. [Google Scholar] [CrossRef] [PubMed]
- Kent-First, M.G.; Kol, S.; Muallem, A.; Ofir, R.; Manor, D.; Blazer, S.; First, N.; Itskovitz-Eldor, J. The incidence and possible relevance of Y-linked microdeletions in babies born after intracytoplasmic sperm injection and their infertile fathers. Mol. Hum. Reprod. 1996, 2, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Roque, M.; Bedoschi, G.; Haahr, T.; Humaidan, P. Intracytoplasmic sperm injection for male infertility and consequences for offspring. Nat. Rev. Urol. 2018, 15, 535–562. [Google Scholar] [CrossRef]
- Isikoglu, M.; Avci, A.; Kendirci Ceviren, A.; Aydınuraz, B.; Ata, B. Conventional IVF revisited: Is ICSI better for non-male factor infertility? Randomized controlled double blind study. J. Gynecol. Obstet. Hum. Reprod. 2021, 50, 101990. [Google Scholar] [CrossRef]
- Meschede, D.; Lemcke, B.; Exeler, J.R.; De Geyter, C.; Behre, H.M.; Nieschlag, E.; Horst, J. Chromosome abnormalities in 447 couples undergoing intracytoplasmic sperm injection—Prevalence, types, sex distribution and reproductive relevance. Hum. Reprod. 1998, 13, 576–582. [Google Scholar] [CrossRef]
- Green, M.P.; Mouat, F.; Miles, H.L.; Hopkins, S.A.; Derraik, J.G.; Hofman, P.L.; Peek, J.C.; Cutfield, W.S. Phenotypic differences in children conceived from fresh and thawed embryos in in vitro fertilization compared with naturally conceived children. Fertil. Steril. 2013, 99, 1898–1904. [Google Scholar] [CrossRef]
- Roque, M.; Lattes, K.; Serra, S.; Solà, I.; Geber, S.; Carreras, R.; Checa, M.A. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: A systematic review and meta-analysis. Fertil. Steril. 2013, 99, 156–162. [Google Scholar] [CrossRef]
- Wang, J.G.; Douglas, N.C.; Dicken, C.; Nakhuda, G.S.; Guarnaccia, M.M.; Sauer, M.V. Cryopreservation of supernumerary high quality embryos predicts favorable outcomes for patients undergoing repeated cycles of in vitro fertilization. Fertil. Steril. 2008, 8, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Grether, J.K.; Qian, Y.; Croughan, M.S.; Wu, Y.W.; Schembri, M.; Camarano, L.; Croen, L.A. Is infertility associated with childhood autism? J. Autism Dev. Disord. 2013, 43, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Van Naarden Braun, K.; Schieve, L.; Daniels, J.; Durkin, M.; Giarelli, E.; Kirby, R.S.; Lee, L.C.; Newschaffer, C.; Nicholas, J.; Pinto-Martin, J. Relationships between multiple births and autism spectrum disorders, cerebral palsy, and intellectual disabilities: Autism and developmental disabilities monitoring (ADDM) network-2002 surveillance year. Autism Res. 2008, 1, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Hallmayer, J.; Glasson, E.J.; Bower, C.; Petterson, B.; Croen, L.; Grether, J.; Risch, N. On the twin risk in autism. Am. J. Hum. Genet. 2002, 71, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Cavoretto, P.; Candiani, M.; Giorgione, V.; Inversetti, A.; Abu-Saba, M.M.; Tiberio, F.; Sigismondi, C.; Farina, A. Risk of spontaneous preterm birth in singleton pregnancies conceived after IVF/ICSI treatment: Meta-analysis of cohort studies. Ultrasound Obstet. Gynecol. 2018, 51, 43–53. [Google Scholar] [CrossRef]
- Dunietz, G.L.; Holzman, C.; McKane, P.; Li, C.; Boulet, S.L.; Todem, D.; Kissin, D.M.; Copeland, G.; Bernson, D.; Sappenfield, W.M.; et al. Assisted reproductive technology and the risk of preterm birth among primiparas. Fertil. Steril. 2015, 103, 974–979.e1. [Google Scholar] [CrossRef]
- Sandin, S.; Schendel, D.; Magnusson, P.; Hultman, C.; Surén, P.; Susser, E.; Grønborg, T.; Gissler, M.; Gunnes, N.; Gross, R.; et al. Autism risk associated with parental age and with increasing difference in age between the parents. Mol. Psychiatry 2016, 21, 693–700. [Google Scholar] [CrossRef]
- Stern, J.E.; Farland, L.V.; Hwang, S.S.; Dukhovny, D.; Coddington, C.C.; Cabral, H.J.; Missmer, S.A.; Declercq, E.; Diop, H. Assisted reproductive technology or infertility: What underlies adverse outcomes? Lessons from the Massachusetts outcome study of assisted reproductive technology. F S Rev. 2022, 3, 242–255. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Liang, Y.; Yao, P. Rethinking autism: The impact of maternal risk factors on autism development. Am. J. Transl. Res. 2022, 14, 1136–1145. [Google Scholar]
- Baron-Cohen, S.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry 2015, 20, 369–376. [Google Scholar] [CrossRef]
- Pluchino, N.; Russo, M.; Genazzani, A.R. The fetal brain: Role of progesterone and allopregnanolone. Horm. Mol. Biol. Clin. Investig. 2016, 27, 29–34X. [Google Scholar] [CrossRef] [PubMed]
- Phoenix, C.H. Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Horm. Behav. 2009, 55, 566. [Google Scholar] [CrossRef] [PubMed]
- Zachor, D.A.; Ben Itzchak, E. Assisted reproductive technology and risk for autism spectrum disorder. Res. Dev. Disabil. 2011, 32, 2950–2956. [Google Scholar] [CrossRef] [PubMed]
- Duranthon, V.; Chavatte-Palmer, P. Long term effects of ART: What do animals tell us? Mol. Reprod. Dev. 2018, 85, 348–368. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Juncá, P.; Irarrázaval, I.; Rolle, A.J.; Gutiérrez, J.I.; Moreno, R.D.; Santos, M.J. In vitro fertilization (IVF) in mammals: Epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol. Res. 2015, 48, 68. [Google Scholar] [CrossRef] [PubMed]
- Rozhkova, I.N.; Okotrub, S.V.; Brusentsev, E.Y.; Igonina, T.N.; Rakhmanova, T.A.; Lebedeva, D.A.; Yatsuk, T.A.; Kozeneva, V.S.; Naprimerov, V.A.; Amstislavsky, S.Y. Effects of Assisted Reproductive Technologies on Social Behavior of BTBR Mice, a Model of Autism Spectrum Disorders. J. Evol. Biochem. Phys. 2023, 59, 458–472. [Google Scholar] [CrossRef]
- Qin, N.X.; Zhao, Y.R.; Shi, W.H.; Zhou, Z.Y.; Zou, K.X.; Yu, C.J.; Liu, X.; Dong, Z.H.; Mao, Y.T.; Zhou, C.L.; et al. Anxiety and depression-like behaviours are more frequent in aged male mice conceived by ART compared with natural conception. Reproduction 2021, 162, 437–448. [Google Scholar] [CrossRef]
- Mainigi, M.; Rosenzweig, J.M.; Lei, J.; Mensah, V.; Thomaier, L.; Talbot, C.C., Jr.; Olalere, D.; Ord, T.; Rozzah, R.; Johnston, M.V.; et al. Peri-Implantation Hormonal Milieu: Elucidating Mechanisms of Adverse Neurodevelopmental Outcomes. Reprod. Sci. 2016, 23, 785–794. [Google Scholar] [CrossRef]
- Bonetti, N.R.; Meister, T.A.; Soria, R.; Akhmedov, A.; Liberale, L.; Ministrini, S.; Dogar, A.; Lüscher, T.F.; Messerli, F.H.; Rexhaj, E.; et al. In vitro fertilization exacerbates stroke size and neurological disability in wildtype mice. Int. J. Cardiol. 2021, 343, 92–101. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Xu, X.; Lou, H.; Le, F.; Li, L.; Sheng, J.; Huang, H.; Jin, F. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny: A putative model for ART-conceived humans. Reprod. Toxicol. 2011, 32, 98–105. [Google Scholar] [CrossRef]
- Sackett, G.; Ruppenthal, G.; Hewitson, L.; Simerly, C.; Schatten, G. Neonatal behavior and infant cognitive development in rhesus macaques produced by assisted reproductive technologies. Dev. Psychobiol. 2006, 48, 243–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Lv, Z.; Yang, Y.; Dong, G.; Yu, Y.; Cui, Y.; Tong, M.; Wang, L.; Zhou, Z.; Zhu, H.; et al. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cell. Mol. Life Sci. 2014, 71, 1761–1774. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, J.; Fan, Y.; Lv, Z.; Guo, X.; Zhao, C.; Zhou, R.; Zhang, Z.; Wang, F.; Xiao, M.; et al. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol. Cell. Proteom. 2009, 8, 1490–1500. [Google Scholar] [CrossRef] [PubMed]
- Ecker, D.J.; Stein, P.; Xu, Z.; Williams, C.J.; Kopf, G.S.; Bilker, W.B.; Abel, T.; Schultz, R.M. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc. Natl. Acad. Sci. USA 2004, 101, 1595–1600. [Google Scholar] [CrossRef]
- Fernández-Gonzalez, R.; Moreira, P.; Bilbao, A.; Jiménez, A.; Pérez-Crespo, M.; Ramírez, M.A.; Rodríguez De Fonseca, F.; Pintado, B.; Gutiérrez-Adán, A. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior. Proc. Natl. Acad. Sci. USA 2004, 101, 5880–5885. [Google Scholar] [CrossRef]
- Donjacour, A.; Liu, X.; Lin, W.; Simbulan, R.; Rinaudo, P.F. In vitro fertilization affects growth and glucose metabolism in a sex-specific manner in an outbred mouse model. Biol. Reprod. 2014, 9, 80. [Google Scholar] [CrossRef]
- Scott, K.A.; Yamazaki, Y.; Yamamoto, M.; Lin, Y.; Melhorn, S.J.; Krause, E.G.; Woods, S.C.; Yanagimachi, R.; Sakai, R.R.; Tamashiro, K.L. Glucose parameters are altered in mouse offspring produced by assisted reproductive technologies and somatic cell nuclear transfer. Biol. Reprod. 2010, 8, 220–227. [Google Scholar] [CrossRef]
- Bouillon, C.; Léandri, R.; Desch, L.; Ernst, A.; Bruno, C.; Cerf, C.; Chiron, A.; Souchay, C.; Burguet, A.; Jimenez, C.; et al. Does embryo culture medium influence the health and development of children born after in vitro fertilization? PLoS ONE 2016, 11, e0150857. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, Y.; Zhou, Z.; Sha, J.; Li, Y.; Liu, J. Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta 2010, 31, 251–258. [Google Scholar] [CrossRef]
- Schroeder, M.; Badini, G.; Sferruzzi-Perri, A.N.; Albrecht, C. The consequences of assisted reproduction technologies on the offspring health throughout life: A placental contribution. Front. Cell Dev. Biol. 2022, 10, 906240. [Google Scholar] [CrossRef]
- Qureshi, I.A.; Mehler, M.F. Epigenetic mechanisms underlying the pathogenesis of neurogenetic diseases. Neurotherapeutics 2014, 11, 708–720. [Google Scholar] [CrossRef]
- La Rovere, M.; Franzago, M.; Stuppia, L. Epigenetics and neurological disorders in ART. Int. J. Mol. Sci. 2019, 20, 4169. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, S.; Fuchs, G.J.; Schulz, E.; Lopez, M.; Kahler, S.G.; Fussell, J.J.; Bellando, J.; Pavliv, O.; Rose, S.; Seidel, L.; et al. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J. Autism Dev. Disord. 2012, 42, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi, A.A.; Liu, G.; Kay, S.S.; Eshraghi, R.S.; Mittal, J.; Moshiree, B.; Mittal, R. Epigenetics and autism spectrum disorder: Is there a correlation? Front. Cell. Neurosci. 2018, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- von Wolff, M.; Haaf, T. In Vitro Fertilization Technology and Child Health. Dtsch. Arztebl. Int. 2020, 117, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Cedars, M.I. In vitro fertilization and risk of autistic disorder and mental retardation. JAMA 2013, 310, 42–43. [Google Scholar] [CrossRef]
- Chiware, T.M.; Vermeulen, N.; Blondeel, K.; Farquharson, R.; Kiarie, J.; Lundin, K.; Matsaseng, T.C.; Ombelet, W.; Toskin, I. IVF and other ART in low- and middle-income countries: A systematic landscape analysis. Hum. Reprod. Update 2021, 27, 213–228. [Google Scholar] [CrossRef]
- Dhont, N.; Luchters, S.; Ombelet, W.; Vyankandondera, J.; Gasarabwe, A.; van de Wijgert, J.; Temmerman, M. Gender differences and factors associated with treatment-seeking behaviour for infertility in Rwanda. Hum. Reprod. 2010, 25, 2024–2030. [Google Scholar] [CrossRef]
- Botha, B.; Shamley, D.; Dyer, S. Availability, effectiveness and safety of ART in sub-Saharan Africa: A systematic review. Hum. Reprod. Open 2018, 2018, hoy003. [Google Scholar] [CrossRef]
- Njagi, P.; Groot, W.; Arsenijevic, J.; Dyer, S.; Mburu, G.; Kiarie, J. Financial costs of assisted reproductive technology for patients in low- and middle-income countries: A systematic review. Hum. Reprod. Open 2023, 2023, hoad007. [Google Scholar] [CrossRef]
- Dyer, S.J.; Patel, M. The economic impact of infertility on women in developing countries—A systematic review. Facts Views Vis. Obgyn. 2012, 4, 102–109. [Google Scholar] [PubMed]
- Dow, K. Looking into the Test Tube: The Birth of IVF on British Television. Med. His. 2019, 63, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sauer, M.V. In vitro fertilization (IVF): A review of 3 decades of clinical innovation and technological advancement. Ther. Clin. Risk Manag. 2006, 2, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Blumberg, S.J.; Zablotsky, B.; Avila, R.M.; Colpe, L.J.; Pringle, B.A.; Kogan, M.D. Diagnosis lost: Differences between children who had and who currently have an autism spectrum disorder diagnosis. Autism 2016, 20, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Mackay, A.; Taylor, S.; Glass, B. Inequity of access: Scoping the barriers to assisted reproductive technologies. Pharmacy 2023, 11, 17. [Google Scholar] [CrossRef]
- Mazurek, M.O.; Handen, B.L.; Wodka, E.L.; Nowinski, L.; Butter, E.; Engelhardt, C.R. Age at first autism spectrum disorder diagnosis: The role of birth cohort, demographic factors, and clinical features. J. Dev. Behav. Pediatr. 2014, 35, 561–569. [Google Scholar] [CrossRef]
Study Design | Sample Size | Country | Specific Neurodevelopmental Outcome(s) | Results | Source |
---|---|---|---|---|---|
Meta-analysis | 15 studies (7 cohort, 8 case-control) | USA Europe Asia | ASD | Positive correlation, not confirmed in singletons | Andreadou 2021 [28] |
Meta-analysis | 11 studies (3 cohort, 8 case-control) | USA Europe Asia | ASD | 1.35 times greater risk compared to spontaneous conception | Liu 2017 [29] |
Meta-analysis | 10 studies (8 cohort, 2 case-control) | USA Denmark Australia Finland Sweden | ASD, CP, intellectual disability, behavioral problems | No significant increased risk of ASD, intellectual disability, or behavioral problems Increased risk of CP | Djuwantono 2020 [30] |
Literature review | 24 studies (10 review/meta-analysis, 12 cohort/retrospective cohort, 2 case-control) | Denmark Finland Sweden USA Europe Asia Australia Iran The Netherlands Taiwan | Neurodevelopmental pathologies (including ASD), infantile CP, poorer school cognitive performance | Not correlated with neurodevelopmental pathologies 2 studies showed positive correlation with CP Not correlated with worsening cognitive performance, improved school cognitive performance seen in 2 studies | Gullo 2022 [31] |
Literature review | 21 studies | Denmark Sweden Finland USA | ASD, CP, intellectual disability, epilepsy, ADHD | Increased risk of CP and epilepsy No increased risk of intellectual disability Data on ASD and ADHD are uncertain | Källén 2014 [32] |
Literature review | Not specified | USA India Europe Asia Finland Denmark Iran | ASD | No significant increased risk but results inconclusive | Saxena 2021 [33] |
Literature review | 20 studies | The Netherlands Denmark Australia Sweden USA Australia | CP, cognitive development, ADHD, ASD | When restricted to singletons, neurodevelopmental outcomes are similar between ART-conceived and SC children | Bergh 2020 [34] |
Literature review | 32 studies | Israel United Kingdom Belgium Sweden USA The Netherlands Denmark | Neurocognitive and motor development | No differences between ART-conceived and SC children | Abdel-Mannan 2014 [35] |
Long-term follow up of a prospective cohort | 358 mothers of ART-conceived children 401 mothers of SC children | Israel | Developmental coordination disorder, short sensory profile, ASD, ADHD | No significant differences between ART-conceived and SC groups regarding developmental coordination disorders or short sensory profile Results for ASD and ADHD are inconclusive | Fahri 2021 [36] |
Literature review | 50 studies | Not specified | Cognitive, motor, and language development, behavior problems | Majority of studies showed no increased risk of cognitive, motor, or language development disorders Lower IQ scores, worse visual-motor ability, and delayed receptive language was seen in ART-conceived group Higher prevalence of behavior problems in ART-conceived group | Zhan 2013 [37] |
Systematic review | 7 studies (2 cohort, 5 case-control) | Denmark Israel Japan Finland | ASD | 4 studies (best quality scores) showed no correlation 2 studies (lowest quality scores) showed increased risk 1 study showed protective role of ART | Conti 2013 [38] |
Literature review | 35 studies | Australia Canada Denmark UK USA Taiwan Israel The Netherlands Iran Finland Belgium Sweden Japan Germany | ASD | No association | Perros 2022 [39] |
Population-based | 513 cases 388 controls | USA | ASD | No significant increased risk | Lyall 2013 [40] |
Cohort | ART dataset: 248 cases 496 controls ASD dataset: 83 cases 332 controls | Taiwan | ASD | No association | Lung 2018 [41] |
Case-control | 100 cases 200 controls | Iran | Neurodevelopmental outcomes | No association | Jenabi 2020 [42] |
Case-control | 2760 children | USA | ASD | No significant differences in copy number variations or autism-associated gene-disrupting events found | Ackerman 2014 [43] |
Population-based case-control | 1538 mother–child pairs | USA | ASD | No association | Schieve 2017 [44] |
Longitudinal cohort | 460,117 singletons: 10,147 ART 8072 subfertile 441,898 fertile | USA | ASD | No increased risk | Diop 2019 [45] |
Meta-analysis | 18 studies (7 cohort, 11 case-control) | Poland USA Iran Denmark Sweden Turkey Finland Japan Israel Taiwan | ASD | No association | Jenabi 2022 [46] |
Survey/questionnaire | Biological parents of 121 ASD children and 100 healthy children | Poland | ASD | No statistically significant influence | Magdalena 2020 [47] |
Mathematical assessment model | 75 scenarios of RFP, cRFP, and RR | USA | ASD | No substantive contribution to the increase in ASD prevalence | Schieve 2011 [48] |
Prospective cohort | 4824 mothers and 5841 children: 1830 conceived via infertility treatment | USA | Early childhood developmental domains (fine motor, gross motor, communication, personal-social functioning, and problem-solving ability) | Children’s development through age 3 years was similar irrespective of infertility treatment or type after accounting for plurality | Yeung 2016 [49] |
Nested case-control | 507 cases 2529 controls | USA | ASD | No significant association with self-reported fertility therapies or history of infertility Significant association with AI among older women | Lyall 2012 [50] |
Population-based cohort | Initial sample: 30,483 children (530 ART-conceived) Sample accounting for SES: 17,075 children (492 ART-conceived) | USA | ASD diagnosis age and symptom severity | No significant differences between ART-conceived and SC children in diagnosis age or symptom severity after adjusting for SES | Schieve 2015 [51] |
Prospective cohort | 15,218 children | UK | Cognitive development | Improved cognitive functioning | Barbuscia 2017 [52] |
Population-based case-control | 461 cases 461 controls | Denmark | ASD | Decreased risk | Maimburg 2007 [53] |
Population-based cross-sectional survey | 42,551 children | Vietnam | ASD | Increased risk | Vui 2023 [54] |
Observational cohort | 48,865 children | USA | ASD | 2x increased risk | Fountian 2015 [55] |
Population-based | 5,076,444 children | Denmark Finland Norway Sweden | Learning and motor functioning disorders, ASD, ADHD | Small increased risk | Rönö 2022 [56] |
Study Design | Sample Size | Country | Specific Neurodevelopmental Outcome (s) | Results | Source |
---|---|---|---|---|---|
Population-based, prospective cohort | Cases: 103 children with ASD conceived by IVF; 180 children with mental retardation conceived by IVF | Sweden | ASD, mental retardation | Not correlated with ASD Small but statistically significant increased risk of mental retardation | Sandin 2013 [57] |
Systematic Review | 87 studies | Sweden Belgium Denmark Australia United Kingdom The Netherlands USA Germany Greece Canada | ASD, ADHD, CP, developmental delay, poor cognitive function and school performance, depression and anxiety | Evidence is reassuring with regard to longer-term mental health outcomes Potential increased risk of CP and slight developmental delay | Hart 2013 [58] |
Longitudinal cohort | 4834 children | USA | ASD | No increased risk | Diop 2019 [45] |
Case-control | 4164 cases 16,582 controls | Finland | ASD | No increased risk | Lehti 2013 [79] |
Population-based cohort | 14,991 IVF children | Denmark | ASD | Increased risk in IVF subgroup | Hvidtjørn 2011 [82] |
Population-based cohort | 108,548 children 83,452 parents | Israel | ASD | No statistically significant association | Davidovitch 2018 [12] |
Prospective register-based cohort | SC: 555,828 IVF/ICSI: 14,991 OI/IUI: 18,148 | Denmark | Mental disorders | No increased risk with IVF or ICSI Small increased incidence with OI and IUI | Bay 2013 [83] |
Clinical case and literature review | Not specified | Morocco Sweden Nordic countries Israel | ASD, Tourette syndrome | Small but statistically significant increased risk | Berrada 2022 [84] |
Population-based cohort | 79 IVF-conceived children 79 SC controls | Saudi Arabia | School performance and long-term outcomes (ASD, ADHD, visual or hearing impairment) | No significant difference between IVF-conceived and SC children | Al-Hathlol 2020 [80] |
Comparative analysis | IVF: 451 questionnaires ICSI: 1914 questionnaires | USA | Development and behavior | IVF conceived children had impaired developmental characteristics compared to ICSI-conceived cohort | Cheung 2021 [81] |
Study Design | Sample Size | Country | Specific Neurodevelopmental Outcome (s) | Results | Source |
---|---|---|---|---|---|
Cohort study | 1,575,971 singleton births | Taiwan | ASD | Increased risk with ICSI | Lo 2022 [85] |
Meta-analysis | 10 studies (8 cohort studies, 2 case-control studies) | Denmark Western Australia America Finland Sweden | ASD, CP, intellectual disability, behavioral problems | Increased risk of ASD and intellectual disability with ICSI compared to IVF No increased risk of CP | Djuwantono 2020 [30] |
Comparative study | ICSI: 87 children IVF: 92 children NC: 85 children | The Netherlands | Behavioral disorders, ASD, Problem behavior | Results inconclusive Higher risk of ASD with ICSI | Knoester 2007 [87] |
Active surveillance | 6245 children | USA | ASD | Positive correlation | Maenner 2023 [88] |
Population-based, prospective cohort | 11,514 ICSI conceived infants | Sweden | ASD, mental retardation | Increased risk of ASD and mental retardation No significant correlation with singletons | Sandin 2013 [57] |
Systematic review and meta-analysis | 19,462 children in meta-analysis 41 studies (2 case-control studies, 39 cohort studies) | Denmark Sweden Finland Israel Croatia Australia Singapore Italy Greece Great Britain Japan Belgium The Netherlands Germany | CP, ASD, developmental delay | Increased risk of CP Inconsistent results regarding ASD and risk of developmental delay | Hvidtjørn 2009 [89] |
Population-based retrospective cohort | 42,383 children | USA | ASD | Higher risk with ICSI | Kissin 2015 [90] |
Population-based cohort | 1,370,152 children | Canada | ASD | Increased risk of ASD with OI/IUI and IVF/ICSI Slightly higher with OI/IUI | Velez 2023 [15] |
Literature review | 7 studies on cognitive outcomes 4 studies on neurodevelopmental outcomes (large population registry studies) | United Kingdom Sweden Australia Belgium Denmark Greece USA | Cognitive outcomes, ASD, mental retardation | No association with cognitive outcomes with ICSI Inconsistent results, some studies identified high risk of ASD and Mental retardation with ICSI | Rumbold 2019 [91] |
Prospective longitudinal cohort study | 103 children | The Netherlands | Behavioral, cognitive, motor performance, and physical development after ICSI | Slight increased risk of ASD (2 children diagnosed) | Meijerink 2016 [92] |
Narrative review | 8 studies (3 cohort, 3 population-based registry studies, 1 systematic review, 1 meta-analysis) | The Netherlands Australia Denmark Sweden USA | Psychomotor development, IQ, mental retardation, ASD, CP | No differences in psychomotor development Lower IQ scores in ICSI singletons Increased risk of mental retardation in ICSI singletons Increased risk of ASD in ICSI singletons | Bergh 2020 [34] |
Comparative analysis | 4 males | China | ASD | ICSI using manually selected spermatozoa higher risk of ASD in offspring | Wang 2021 [93] |
Comparative analysis | ICSI: 1914 questionnaires IVF: 451 questionnaires | USA | Development and behavior | No differences in child behavior between ICSI and IVF cohorts. ICSI from ejaculated spermatozoa had high risk of abnormal development and behavior compared to surgically removed spermatozoa | Cheung 2021 [81] |
Systematic review | 34 studies (18 prospective cohorts, 7 cross-sectional cohorts, 11 retrospective cohorts) | Belgium Denmark Greece Sweden United Kingdom Germany Holland Australia Iran USA Finland Spain China Israel | ASD | Higher risk of ASD in ICSI conceived children | Catford 2017 [94] |
Longitudinal cohort | 3904 children | USA | ASD | No increased risk | Diop 2019 [45] |
Literature review | 50 studies | Not specified | Cognitive, motor, and language development, behavioral problems | ICSI children found to have higher risk of ASD than the general population | Zhan 2013 [37] |
Prospective register-based cohort | SC: 555,828 IVF/ICSI: 14,991 OI/IUI: 18,148 | Denmark | Mental disorders | No increased risk with IVF or ICSI Small increased incidence with OI and IUI | Bay 2013 [83] |
Study Design | Sample Size | Country | Specific Neurodevelopmental Outcome (s) | Results | Source |
---|---|---|---|---|---|
Prospective register-based cohort | 33,139 ART-conceived children 555,828 SC children | Denmark | Mental disorders | No significantly increased hazards associated | Bay 2013 [83] |
Population-based cohort | 108,548 children 83,452 parents | Israel | ASD | No statistically significant association | Davidovitch 2018 [12] |
Meta-analysis | 10 studies (8 cohort studies, 2 case-control studies) | Denmark Western Australia America Finland Sweden | ASD, CP, intellectual disability, behavioral problems | No significant differences in risk between fresh vs. frozen embryo transfer | Djuwantono 2020 [30] |
Species | Exposure | Sample Size | Specific Neurodevelopmental Outcome (s) | Behavior Test Used | Results | Source |
---|---|---|---|---|---|---|
Mice | Blastomere biopsy of in vitro cultured four-cell embryos | Control n = 10 Biopsied n = 7 | Spatial learning | Hidden platform version of the MWM, pole climbing test | Poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration | Wu 2014 [123] |
Mice | Blastomere biopsy of in vitro cultured four-cell embryos | Control n = 8 Biopsied n = 5 | Intelligence and memory | Hidden platform version of the MWM | Behavioral defects associated with increased hypomyelination of nerve fibers | Yu 2009 [124] |
Mice | Embryo transfer following culture in vivo (control), in KSOM, or in Whitten’s medium | In vivo (control): n = 34 KSOM: n = 47 Whitten’s medium: n = 46 | Anxiety, spatial learning, motor performance | Elevated zero maze, hidden platform version of the MWM, Rota-rod, classical fear conditioning tests | Reduced anxiety, decreased memorization of spatial information, and increased locomotor activity compared to controls | Ecker 2004 [125] |
Mice | Embryos obtained from superovulated females exposed to either: 1. KSOM + 10% FCS 2. KSOM + 1 g/L BSA (control) | −FCS: n = 35 +FCS: n = 43 | Hyperactivity, anxiety, implicit memory | Open field, elevated plus maze, free-choice exploration in Y-maze tests | Altered locomotion activity at 5 and 15 months in +FCS group Increased anxiety and deficiencies in implicit memory in +FCS group | Fernández-Gonzalez 2004 [126] |
Mice: C57BL/6J (controls) and BTBR (idiopathic model of ASD) | In vitro culture and embryo transfer | C57BL/6J: 39 males 47 females BTBR: 35 males 44 females | Social behavior | Open field, social motivation and recognition tests | Decreased social recognition in females of both strains | Rozhkova 2023 [117] |
Mice | IVF, embryo culture, and embryo transfer; ischemia/reperfusion brain injury | Control: n = 5 ART: n = 7–10 | Neurological performance post-stroke | Composite sensory-motor test | Significantly worse morphological and functional stroke outcomes Worse neurological performance 24 h and 48 h after artery occlusion | Bonetti 2021 [120] |
Mice | Superovulation | Control: n = 25 Superovulated: n = 23 | Anxiety, learning and memory, depressive behavior, cortical neuron density | Elevated zero maze, open field, novel object recognition, forced swim tests | Increased anxiety-like behavior No differences in learning and memory Fewer neurons per field | Mainigi 2015 [119] |
Mice | IVF-ET, IVF-FET | Control: n = 7 IVF-ET: n = 7 IVF-FET: n = 7 | Anxiety, spatial learning and memory, depressive behavior | Open field, elevated plus maze, MWM, light/dark transition, tail suspension, forced swim, sucrose preference tests | Increased anxiety and depression-like behaviors seen in the IVF-ET and IVF-FET groups compared to NC group | Qin 2021 [118] |
Rhesus Monkey (Macaca mulatta) | Embryo splitting, ICSI, IVF, and AI | 28 rhesus monkey infants | Neonatal reflexes, self-feeding ability, recognition and memory, object concept attainment, simple discrimination learning and reversal, learning set acquisition | Reflex and sensory motor response, self-feeding, recognition memory, WGTA series, object concept physical-search tests | No delayed development in ART group Accelerated attainment of milestones involving sensory-motor behaviors seen in ES and ICSI groups | Sackett 2005 [122] |
Mice | IVF | NC: n = 12 (6 males and 6 females) IVF: n = 12 (6 males and 6 females) | Spatial learning and memory | Hidden platform version of the MWM | No effect on memory or learning ability | Li 2011 [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muller, K.; Carballo, A.; Vega, K.; Talyn, B. A Scoping Review: Risk of Autism in Children Born from Assisted Reproductive Technology. Reprod. Med. 2024, 5, 204-230. https://doi.org/10.3390/reprodmed5040019
Muller K, Carballo A, Vega K, Talyn B. A Scoping Review: Risk of Autism in Children Born from Assisted Reproductive Technology. Reproductive Medicine. 2024; 5(4):204-230. https://doi.org/10.3390/reprodmed5040019
Chicago/Turabian StyleMuller, Kelly, Amelie Carballo, Karina Vega, and Becky Talyn. 2024. "A Scoping Review: Risk of Autism in Children Born from Assisted Reproductive Technology" Reproductive Medicine 5, no. 4: 204-230. https://doi.org/10.3390/reprodmed5040019
APA StyleMuller, K., Carballo, A., Vega, K., & Talyn, B. (2024). A Scoping Review: Risk of Autism in Children Born from Assisted Reproductive Technology. Reproductive Medicine, 5(4), 204-230. https://doi.org/10.3390/reprodmed5040019