The Quantified Woman: Exploring Perceptions on Health App Use among Austrian Females of Reproductive Age
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Study Questionnaire
2.3. Statistical Data Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brand, T. Connected Living: The Next Wave of Mobile Devices. GSM Assoc Minist. Programme 2012. Available online: http://www.gsma.com/connectedliving/wp-content/uploads/2012/05/ (accessed on 7 August 2020).
- Jennifer, L.P.; Kristin, S.V.; Dawn, M.F.; Julie, C.H.; Paul, Y.T.; Gregory, J.H. Health Care Providers Style May Impact Acceptance of Telemonitoring. Home Health Care Manag. Pract. 2012, 24, 276–282. [Google Scholar]
- Haluza, D.; Jungwirth, D. ICT and the future of healthcare: Aspects of pervasive health monitoring. Inform. Health Soc. Care 2016, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Muigg, D.; Kastner, P.; Modre-Osprian, R.; Haluza, D.; Duftschmid, G. Is Austria Ready for Telemonitoring? A Readiness Assessment among Doctors and Patients in the Field of Diabetes. Stud. Health Technol. Inform. 2018, 248, 322–329. [Google Scholar] [PubMed]
- Riedl, R.; Robausch, M.; Berghold, A. The Evaluation of the Effectiveness of Austrians Disease Management Program in Patients with Type 2 Diabetes Mellitus—A Population-Based Retrospective Cohort Study. PLoS ONE 2016, 11, e0161429. [Google Scholar] [CrossRef]
- Zwingerman, R.; Chaikof, M.; Jones, C. A Critical Appraisal of Fertility and Menstrual Tracking Apps for the iPhone. J. Obstet. Gynaecol. Can. 2019, 24, 30882–30885. [Google Scholar] [CrossRef]
- Pohl, M. 325,000 Mobile Health Apps Available in 2017—Android Now the Leading mHealth Platform. Available online: https://research2guidance.com/325000-mobile-health-apps-available-in-2017/ (accessed on 7 August 2020).
- Carroll, J.K.; Moorhead, A.; Bond, R.; LeBlanc, W.G.; Petrella, R.J.; Fiscella, K. Who Uses Mobile Phone Health Apps and Does Use Matter? A Secondary Data Analytics Approach. J. Med. Internet Res. 2017, 19, e125. [Google Scholar] [CrossRef] [Green Version]
- West, J.H.; Hall, P.C.; Hanson, C.L.; Barnes, M.D.; Giraud-Carrier, C.; Barrett, J. There’s an app for that: Content analysis of paid health and fitness apps. J. Med. Internet Res. 2012, 14, e72. [Google Scholar] [CrossRef] [Green Version]
- Samoggia, A.; Riedel, B. Assessment of nutrition-focused mobile apps’ influence on consumers’ healthy food behaviour and nutrition knowledge. Food Res. Int. 2020, 128, 21. [Google Scholar] [CrossRef]
- Naszay, M.; Stockinger, A.; Jungwirth, D.; Haluza, D. Digital age and the Public eHealth perspective: Prevailing health app use among Austrian Internet users. Inform. Health Soc. Care 2017, 43, 390–400. [Google Scholar] [CrossRef]
- Krebs, P.; Duncan, D.T. Health App Use among US Mobile Phone Owners: A National Survey. JMIR Mhealth Uhealth 2015, 3, e101. [Google Scholar] [CrossRef] [Green Version]
- Hoy, M.B. Personal Activity Trackers and the Quantified Self. Med. Ref. Serv. Q. 2016, 35, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Baker, D.A. Four Ironies of Self-quantification: Wearable Technologies and the Quantified Self. Sci. Eng. Ethics 2020, 22, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, S.S.; Lu, N.; Chandak, A.; Kim, H.; Wyant, D.; Bhatt, J.; Kedia, S.; Chang, C.F. Use of Mobile Health Applications for Health-Seeking Behavior Among US Adults. J. Med. Syst. 2016, 40, 16–492. [Google Scholar] [CrossRef] [PubMed]
- Youm, S.; Park, S.H. Development and evaluation of a mobile application for personal lifestyle check-up and improvement. Telemed. J. E Health 2014, 20, 1057–1062. [Google Scholar] [CrossRef] [Green Version]
- Kao, C.K.; Liebovitz, D.M. Consumer Mobile Health Apps: Current State, Barriers, and Future Directions. PM R 2017, 9, S106–S115. [Google Scholar] [CrossRef]
- Haluza, D.; Naszay, M.; Stockinger, A.; Jungwirth, D. Digital Natives versus Digital Immigrants: Influence of Online Health Information Seeking on the Doctor–Patient Relationship. Health Commun. 2017, 32, 1342–1349. [Google Scholar] [CrossRef]
- AlGhamdi, K.M.; Moussa, N.A. Internet use by the public to search for health-related information. Int. J. Med. Inf. 2012, 81, 363–373. [Google Scholar] [CrossRef]
- Baumann, E.; Czerwinski, F.; Reifegerste, D. Gender-Specific Determinants and Patterns of Online Health Information Seeking: Results from a Representative German Health Survey. J. Med. Int. Res. 2017, 19, e92. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, N.; Shi, Y.; Jung, K. Seeking health information online: Does limited healthcare access matter? J. Am. Med. Inform. Assoc. 2014, 21, 1113–1117. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, H.K.; Bujnowska-Fedak, M.M.; Chronaki, C.E.; Dumitru, R.C.; Pudule, I.; Santana, S.; Voss, H.; Wynn, R. European citizens’ use of E-health services: A study of seven countries. BMC Public Health 2007, 7, 53. [Google Scholar] [CrossRef] [Green Version]
- Kontos, E.; Blake, K.D.; Chou, W.Y.; Prestin, A. Predictors of eHealth usage: Insights on the digital divide from the Health Information National Trends Survey 2012. J. Med. Int. Res. 2014, 16, e172. [Google Scholar] [CrossRef] [PubMed]
- Escoffery, C. Gender Similarities and Differences for e-Health Behaviors among U.S. Adults. Telemed. J. E Health 2018, 24, 335–343. [Google Scholar] [CrossRef]
- Bol, N.; Helberger, N.; Weert, J.C.M. Differences in mobile health app use: A source of new digital inequalities? Inf. Soc. 2018, 34, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Haluza, D.; Wernhart, A. Does gender matter? Exploring perceptions regarding health technologies among employees and students at a medical university. Int. J. Med. Inform. 2019, 130, 9. [Google Scholar] [CrossRef] [PubMed]
- Joiner, R.; Jeff Gavin, J.; Brosnan, M.; Cromby, J.; Gregory, H.; Guiller, J.; Maras, P.; Moon, A. Gender, Internet Experience, Internet Identification, and Internet Anxiety: A Ten-Year Followup. Cyberpsychol. Behav. Soc. Netw. 2012, 15, 370–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joo, S.; Chai, H.W.; Jun, H.J.; Almeida, D.M. Daily Stressors Facilitate Giving and Receiving of Emotional Support in Adulthood. Stress Health 2020, 20, 330–337. [Google Scholar] [CrossRef]
- Rattel, J.A.; Mauss, I.B.; Liedlgruber, M.; Wilhelm, F.H. Sex Differences in Emotional Concordance. Biol. Psychol. 2020, 17, 107845. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Shi, S.; Wu, Y.; Thomas, D.; Symul, L.; Pierson, E.; Leskovec, J. Predicting pregnancy using large-scale data from a women’s health tracking mobile application. Proc. Int. World Wide Web Conf. 2019, 10, 3313512. [Google Scholar]
- Levy, J.; Romo-Aviles, N. “A good little tool to get to know yourself a bit better”: A qualitative study on users’ experiences of app-supported menstrual tracking in Europe. BMC Public Health 2019, 19, 1213. [Google Scholar] [CrossRef] [Green Version]
- Freis, A.; Freundl-Schütt, T.; Wallwiener, L.-M.; Baur, S.; Strowitzki, T.; Freundl, G.; Frank-Herrmann, P. Plausibility of Menstrual Cycle Apps Claiming to Support Conception. Front. Public Health 2018, 6, 98. [Google Scholar] [CrossRef]
- Lupton, D. Quantified sex: A critical analysis of sexual and reproductive self-tracking using apps. Cult. Health Sex. 2015, 17, 440–453. [Google Scholar] [CrossRef] [PubMed]
- WHO. Reproductive Health Indicators: Guidelines for Their Generation, Interpretation and Analysis for Global Monitoring. 2006. Available online: https://apps.who.int/iris/bitstream/handle/10665/43185/924156315X_eng.pdf (accessed on 7 August 2020).
- SoSci Survey. Available online: www.soscisurvey.de (accessed on 7 August 2020).
- Gagnon, M.P.; Desmartis, M.; Labrecque, M.; Car, J.; Pagliari, C.; Pluye, P.; Fremont, P.; Gagnon, J.; Tremblay, N.; Legare, F. Systematic review of factors influencing the adoption of information and communication technologies by healthcare professionals. J. Med. Syst. 2012, 36, 241–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muigg, D.; Duftschmid, G.; Kastner, P.; Modre-Osprian, R.; Haluza, D. Telemonitoring readiness among Austrian diabetic patients: A cross-sectional validation study. Health Inform. J. 2020, 1–12. [Google Scholar] [CrossRef]
- Jennett, P.; Jackson, A.; Healy, T.; Ho, K.; Kazanjian, A.; Woollard, R.; Haydt, S.; Bates, J. A study of a rural community’s readiness for telehealth. J. Telemed. Telecare 2003, 9, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Agency for Clinical Innovation. Guidelines for the Use of Telehealth for Clinical and Non Clinical Settings in NSW. 2015. Available online: https://www.telemedecine-360.com/wp-content/uploads/2019/02/2015-ACI-telehealth-guidelines.pdf (accessed on 7 August 2020).
- Zalma, A.R.; Safiah, M.Y.; Ajau, D.; Khairil Anuar, M.I. Reliability and validity of television food advertising questionnaire in Malaysia. Health Promot. Int. 2013, 30, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2006; Volume 6. [Google Scholar]
- Clue Period & Ovulation Tracker. Available online: https://helloclue.com/ (accessed on 7 August 2020).
- Strawberry Week. Available online: https://erdbeerwoche.com/ (accessed on 7 August 2020).
- MyPill. Available online: https://mypill.app (accessed on 7 August 2020).
- Period Tracker. Available online: https://apps.apple.com/us/app/period-tracker-by-gp-apps/id330376830 (accessed on 7 August 2020).
- Lady Cycle. Available online: https://www.ladycycle.com/de/ (accessed on 7 August 2020).
- Ajana, B. Digital health and the biopolitics of the Quantified Self. Digit. Health 2017, 3, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massaro, A.; Galiano, A.; Scarafile, D.; Vacca, A.; Frassanito, A.; Melaccio, A.; Solimando, A.; Ria, R.; Calamita, G.; Bonomo, M.; et al. Telemedicine DSS-AI Multi Level Platform for Monoclonal Gammopathy Assistance. In Proceedings of the 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Bari, Italy, 1 June–1 July 2020; pp. 1–5. [Google Scholar]
- Van Velsen, L.; Beaujean, D.J.; van Gemert-Pijnen, J.E. Why mobile health app overload drives us crazy, and how to restore the sanity. BMC Med. Inform. Decis. Mak. 2013, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Haluza, D.; Böhm, I. Mobile and online health information: Exploring digital media use among Austrian parents. Int. J. Environ. Res. Public Health 2020, 17, 6053. [Google Scholar] [CrossRef]
- Statistik Austria. Demographic Indicators. 2019. Available online: https://www.statistik.at/web_en/statistics/PeopleSociety/population/demographic_indicators/index.html (accessed on 7 August 2020).
- Hofer, F.; Haluza, D. Are Austrian practitioners ready to use medical apps? Results of a validation study. BMC Med. Inform. Decis. Mak. 2019, 19, 88. [Google Scholar] [CrossRef]
- Muigg, D.; Kastner, P.; Duftschmid, G.; Modre-Osprian, R.; Haluza, D. Readiness to use telemonitoring in diabetes care: A cross-sectional study among Austrian practitioners. BMC Med. Inform. Decis. Mak. 2019, 19, 26. [Google Scholar] [CrossRef] [Green Version]
Benefits of Health Apps | Mean | SD |
---|---|---|
Location-independent access to health services | 2.37 | 1.06 |
Higher quality of healthcare | 3.05 | 1.08 |
Higher efficiency in healthcare resource allocation | 3.15 | 1.14 |
Reduced healthcare costs | 3.24 | 1.03 |
Higher efficiency in medical consultation | 3.31 | 1.08 |
Reduced multiple diagnostics | 3.53 | 1.09 |
Improved doctor–patient relationship | 3.54 | 1.05 |
Benefits Score | 3.17 | 0.76 |
Items | Mean | SD |
---|---|---|
As a person, in order to meet the requirements for health app use, I …: | ||
Core Readiness | ||
Have a desire for change and want to actively be involved in my health and health care condition | 2.40 | 1.16 |
Feel dissatisfied with usual doctor–patient interaction or have a desire for a more comfortable setting for obtaining health information | 3.54 | 1.33 |
Identify with a sense of dissatisfaction with the current state of health care | 3.73 | 1.20 |
Acknowledge unmet healthcare needs | 3.96 | 1.24 |
Identify with a sense of isolation and a lack of access to healthcare | 4.13 | 0.99 |
Core Readiness Score | 3.56 | 1.73 |
Engagement Readiness | ||
Have a sense of ownership regarding my wellbeing and that of my community | 1.35 | 0.60 |
Believe that health apps are not a replacement, but an addition to traditional care | 1.59 | 0.76 |
Am knowledgeable about health apps and/or want to know what health apps are | 1.70 | 0.79 |
Am comfortable with using health apps | 2.03 | 1.06 |
Believe that cultural issues can be addressed when using health apps | 2.77 | 1.08 |
Believe that concerns specific to privacy/confidentiality/security have been addressed when using health apps | 3.04 | 1.12 |
Engagement Readiness Score | 2.08 | 1.69 |
Structural Readiness | ||
Have access to health apps and the ability to use them | 1.59 | 0.77 |
Have access to information about health apps from official sources (e.g., brochures, from doctors) | 2.96 | 1.33 |
Am a local champion who has an ambition to bring telehealth to my community | 3.65 | 1.19 |
Am aware of education campaigns about health apps | 4.60 | 0.79 |
Structural Readiness Score | 3.20 | 1.02 |
Readiness Score | 2.87 | 0.45 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haluza, D.; Böhm, I. The Quantified Woman: Exploring Perceptions on Health App Use among Austrian Females of Reproductive Age. Reprod. Med. 2020, 1, 132-141. https://doi.org/10.3390/reprodmed1020010
Haluza D, Böhm I. The Quantified Woman: Exploring Perceptions on Health App Use among Austrian Females of Reproductive Age. Reproductive Medicine. 2020; 1(2):132-141. https://doi.org/10.3390/reprodmed1020010
Chicago/Turabian StyleHaluza, Daniela, and Isabella Böhm. 2020. "The Quantified Woman: Exploring Perceptions on Health App Use among Austrian Females of Reproductive Age" Reproductive Medicine 1, no. 2: 132-141. https://doi.org/10.3390/reprodmed1020010