How Online Health Platform Engagement Shapes Atrial Fibrillation Treatment Attitudes: The Role of Psychological Mediators
Abstract
1. Introduction
1.1. Background
1.2. Literature Review
1.2.1. Patient Attitudes Toward AF Treatment
1.2.2. Health Belief Model
1.2.3. Treat Perception: Perceived Susceptibility
1.2.4. Threat Perception: Perceived Severity
1.2.5. Behavioral Evaluation: Perceived Benefits
1.2.6. Behavioral Evaluation: Perceived Barriers
1.2.7. Engagement with OHPs
1.2.8. Perceived Effectiveness
2. Materials and Methods
2.1. Method
2.2. Sample Size
2.3. Study Design
2.4. Analysis
2.5. Variables
3. Results
3.1. Data Descriptives
3.2. Assumptions
3.3. Coefficients and Correlations
3.4. Structural Model
3.4.1. Direct Effects
3.4.2. Mediation Effects
4. Discussion
4.1. Findings
4.2. Implications
4.3. Limitations
4.4. Suggestions for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AF | Atrial fibrillation |
| HBM | Health Belief Model |
| PAAT | Patient attitudes toward AF treatments |
| SEM | Structural Equation Modeling |
References
- Brundel, B.J.J.M.; Ai, X.; Hills, M.T.; Kuipers, M.F.; Lip, G.Y.H.; de Groot, N.M.S. Atrial Fibrillation. Nat. Rev. Dis. Primers 2022, 8, 21. [Google Scholar] [CrossRef]
- Cheen, M.H.H.; Tan, Y.Z.; Oh, L.F.; Wee, H.L.; Thumboo, J. Prevalence of and Factors Associated with Primary Medication Non-Adherence in Chronic Disease: A Systematic Review and Meta-Analysis. Int. J. Clin. Pract. 2019, 73, e13350. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhao, H.; Wang, X.; Gao, C.; Qin, Y.; Cai, H.; Chen, B.; Cao, J. Factors Influencing Medication Knowledge and Beliefs on Warfarin Adherence among Patients with Atrial Fibrillation in China. Patient Prefer. Adherence 2017, 11, 213–220. [Google Scholar] [CrossRef] [PubMed]
- American Heart Association. Medication Adherence: Taking Your Meds as Directed. Available online: https://www.heart.org/en/health-topics/consumer-healthcare/medication-information/medication-adherence-taking-your-meds-as-directed (accessed on 21 October 2025).
- Cutler, D.M. The Good and Bad News of Health Care Employment. JAMA 2018, 319, 758–759. [Google Scholar] [CrossRef] [PubMed]
- Willis, E. Applying the Health Belief Model to Medication Adherence: The Role of Online Health Communities and Peer Reviews. J. Health Commun. 2018, 23, 743–750. [Google Scholar] [CrossRef]
- Chia, A.W.-Y.; Teo, W.L.-L.; Acharyya, S.; Munro, Y.L.; Dalan, R. Patient-Physician Communication of Health and Risk Information in the Management of Cardiovascular Diseases and Diabetes: A Systematic Scoping Review. BMC Med. 2025, 23, 96. [Google Scholar] [CrossRef]
- Major, I. Two-Sided Information Asymmetry in the Healthcare Industry. Int. Adv. Econ. Res. 2019, 25, 177–193. [Google Scholar] [CrossRef]
- Luo, A.; Qin, L.; Yuan, Y.; Yang, Z.; Liu, F.; Huang, P.; Xie, W. The Effect of Online Health Information Seeking on Physician-Patient Relationships: Systematic Review. J. Med. Internet Res. 2022, 24, e23354. [Google Scholar] [CrossRef]
- Aref-Adib, G.; O’Hanlon, P.; Fullarton, K.; Morant, N.; Sommerlad, A.; Johnson, S.; Osborn, D. A Qualitative Study of Online Mental Health Information Seeking Behaviour by Those with Psychosis. BMC Psychiatry 2016, 16, 232. [Google Scholar] [CrossRef]
- Alanzi, T.M. Public Perceptions Towards Online Health Information: A Mixed-Method Study in Eastern Province of Saudi Arabia. J. Healthc. Leadersh. 2023, 15, 259–272. [Google Scholar] [CrossRef]
- Potpara, T.S.; Mihajlovic, M.; Zec, N.; Marinkovic, M.; Kovacevic, V.; Simic, J.; Kocijancic, A.; Vajagic, L.; Jotic, A.; Mujovic, N.; et al. Self-Reported Treatment Burden in Patients with Atrial Fibrillation: Quantification, Major Determinants, and Implications for Integrated Holistic Management of the Arrhythmia. Europace 2020, 22, 1788–1797. [Google Scholar] [CrossRef]
- Mihajlovic, M.; Simic, J.; Marinkovic, M.; Kovacevic, V.; Kocijancic, A.; Mujovic, N.; Potpara, T.S. Sex-Related Differences in Self-Reported Treatment Burden in Patients with Atrial Fibrillation. Front. Cardiovasc. Med. 2022, 9, 1029730. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.-Q.; Chen, Y.; Dabbs, A.D.; Wu, Y. The Effectiveness of Smartphone App–Based Interventions for Assisting Smoking Cessation: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2023, 25, e43242. [Google Scholar] [CrossRef]
- Li, Y.; Gong, Y.; Zheng, B.; Fan, F.; Yi, T.; Zheng, Y.; He, P.; Fang, J.; Jia, J.; Zhu, Q.; et al. Effects on Adherence to a Mobile App-Based Self-Management Digital Therapeutics Among Patients with Coronary Heart Disease: Pilot Randomized Controlled Trial. JMIR Mhealth Uhealth 2022, 10, e32251. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Kwan, Y.H.; Yap, W.L.; Lim, Z.Y.; Phang, J.K.; Loo, Y.X.; Aw, J.; Low, L.L. Factors Influencing Medication Adherence in Multi-Ethnic Asian Patients with Chronic Diseases in Singapore: A Qualitative Study. Front. Pharmacol. 2023, 14, 1124297. [Google Scholar] [CrossRef] [PubMed]
- Hermans, A.N.L.; Gawalko, M.; Dohmen, L.; van der Velden, R.M.J.; Betz, K.; Duncker, D.; Verhaert, D.V.M.; Heidbuchel, H.; Svennberg, E.; Neubeck, L.; et al. Mobile Health Solutions for Atrial Fibrillation Detection and Management: A Systematic Review. Clin. Res. Cardiol. 2022, 111, 479–491. [Google Scholar] [CrossRef]
- Hodgkin, P.; Horsley, L.; Metz, B. The Emerging World of Online Health Communities (SSIR). Available online: https://ssir.org/articles/entry/the_emerging_world_of_online_health_communities (accessed on 23 January 2024).
- Tonko, J.B.; Wright, M.J. Review of the 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation—What Has Changed and How Does This Affect Daily Practice. J. Clin. Med. 2021, 10, 3922. [Google Scholar] [CrossRef]
- Al-Ani, A.; Hammouri, M.; Sultan, H.; Al-Huneidy, L.; Mansour, A.; Al-Hussaini, M. Factors Affecting Cervical Screening Using the Health Belief Model during the Last Decade: A Systematic Review and Meta-Analysis. Psycho Oncol. 2024, 33, e6275. [Google Scholar] [CrossRef]
- Ritchie, D.; Van den Broucke, S.; Van Hal, G. The Health Belief Model and Theory of Planned Behavior Applied to Mammography Screening: A Systematic Review and Meta-Analysis. Public Health Nurs. 2021, 38, 482–492. [Google Scholar] [CrossRef]
- Limbu, Y.B.; Gautam, R.K. How Well the Constructs of Health Belief Model Predict Vaccination Intention: A Systematic Review on COVID-19 Primary Series and Booster Vaccines. Vaccines 2023, 11, 816. [Google Scholar] [CrossRef]
- Chen, H.; Li, X.; Gao, J.; Liu, X.; Mao, Y.; Wang, R.; Zheng, P.; Xiao, Q.; Jia, Y.; Fu, H.; et al. Health Belief Model Perspective on the Control of COVID-19 Vaccine Hesitancy and the Promotion of Vaccination in China: Web-Based Cross-Sectional Study. J. Med. Internet Res. 2021, 23, e29329. [Google Scholar] [CrossRef] [PubMed]
- Saffari, M.; Sanaeinasab, H.; Rashidi-jahan, H.; Aghazadeh, F.; Raei, M.; Rahmati, F.; Al Zaben, F.; Koenig, H.G. An Intervention Program Using the Health Belief Model to Modify Lifestyle in Coronary Heart Disease: Randomized Controlled Trial. Int. J. Behav. Med. 2024, 31, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Suhr, D. The Basics of Structural Equation Modeling. Ph.D. Thesis, University of Northern Colorado, Greeley, CO, USA, 2006. [Google Scholar]
- Frymier, A.B.; Nadler, M.K. Persuasion: Integrating Theory, Research, and Practice, 4th ed.; Kendall Hunt: Dubuque, IA, USA, 2017. [Google Scholar]
- Haddock, G.; Thorne, S.; Wolf, L.J. Attitudes and Behavior. In Oxford Research Encyclopedia of Psychology; Oxford University Press: Oxford, UK, 2020; ISBN 978-0-19-023655-7. [Google Scholar]
- Zolnoori, M.; Fung, K.W.; Fontelo, P.; Kharrazi, H.; Faiola, A.; Wu, Y.S.S.; Stoffel, V.; Patrick, T. Identifying the Underlying Factors Associated With Patients’ Attitudes Toward Antidepressants: Qualitative and Quantitative Analysis of Patient Drug Reviews. JMIR Ment. Health 2018, 5, e10726. [Google Scholar] [CrossRef] [PubMed]
- Lip, G.Y.H.; Keshishian, A.; Li, X.; Hamilton, M.; Masseria, C.; Gupta, K.; Luo, X.; Mardekian, J.; Friend, K.; Nadkarni, A.; et al. Effectiveness and Safety of Oral Anticoagulants Among Nonvalvular Atrial Fibrillation Patients. Stroke 2018, 49, 2933–2944. [Google Scholar] [CrossRef]
- Zullig, L.L.; Mendys, P.; Bosworth, H.B. Medication Adherence: A Practical Measurement Selection Guide Using Case Studies. Patient Educ. Couns. 2017, 100, 1410–1414. [Google Scholar] [CrossRef]
- Dunbar-Jacob, J.; Zhao, J. Medication Adherence Measurement in Chronic Diseases: A State-of-the-Art Review of the Literature. Nurs. Rep. 2025, 15, 370. [Google Scholar] [CrossRef]
- Short, S.E.; Mollborn, S. Social Determinants and Health Behaviors: Conceptual Frames and Empirical Advances. Curr. Opin. Psychol. 2015, 5, 78–84. [Google Scholar] [CrossRef]
- Rosenstock, I.M. Historical Origins of the Health Belief Model. Health Educ. Monogr. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Acosta, R.W.; Wolfe, M.S. Chapter 5—Structure and Organization of the Pre-Travel Consultation and General Advice for Travelers. In Travel Medicine, 2nd ed.; Keystone, J.S., Kozarsky, P.E., Freedman, D.O., Nothdurft, H.D., Connor, B.A., Eds.; Mosby: Edinburgh, UK, 2008; pp. 35–45. ISBN 978-0-323-03453-1. [Google Scholar]
- Mobini, S.; Allahbakhshian, A.; Shabanloei, R.; Sarbakhsh, P. Illness Perception, Self-Efficacy, and Medication Adherence in Patients with Coronary Artery Disease: A Path Analysis of Conceptual Model. SAGE Open Nurs. 2023, 9, 23779608231171772. [Google Scholar] [CrossRef]
- Dugunchi, F.; Mudgal, S.K.; Marznaki, Z.H.; Shirafkan, H.; Abrotan, S.; Jafarian, F.; Pourkia, R. Levels of Adherence to Treatment, Illness Perception and Acceptance of Illness in Patients with Coronary Artery Disease—Descriptive and Correlational Study. BMC Cardiovasc. Disord. 2024, 24, 171. [Google Scholar] [CrossRef]
- Janz, N.K.; Becker, M.H. The Health Belief Model: A Decade Later. Health Educ. Q. 1984, 11, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Karl, J.A.; Fischer, R.; Druică, E.; Musso, F.; Stan, A. Testing the Effectiveness of the Health Belief Model in Predicting Preventive Behavior During the COVID-19 Pandemic: The Case of Romania and Italy. Front. Psychol. 2022, 12, 627575. [Google Scholar] [CrossRef] [PubMed]
- Hiew, L.-C.; Lee, A.H.; Leong, C.-M.; Liew, C.-Y.; Soe, M.-H. Do They Really Intend to Adopt E-Wallet? Prevalence Estimates for Government Support and Perceived Susceptibility. Asian J. Bus. Res. 2022, 12, 77–98. [Google Scholar] [CrossRef]
- Ullah, F.; Ragazzoni, L.; Hubloue, I.; Barone-Adesi, F.; Valente, M. The Use of the Health Belief Model in the Context of Heatwaves Research: A Rapid Review. Disaster Med. Public Health Prep. 2024, 18, e34. [Google Scholar] [CrossRef]
- Scarinci, I.C.; Bandura, L.; Hidalgo, B.; Cherrington, A. Development of a Theory-Based (PEN-3 and Health Belief Model), Culturally Relevant Intervention on Cervical Cancer Prevention Among Latina Immigrants Using Intervention Mapping. Health Promot. Pract. 2012, 13, 29–40. [Google Scholar] [CrossRef]
- Boulos, D.N.K.; Hassan, A.M. Using the Health Belief Model to Assess COVID-19 Perceptions and Behaviours among a Group of Egyptian Adults: A Cross-Sectional Study. BMC Public Health 2023, 23, 1624. [Google Scholar] [CrossRef]
- Yang, X.; Wei, L.; Liu, Z. Promoting COVID-19 Vaccination Using the Health Belief Model: Does Information Acquisition from Divergent Sources Make a Difference? Int. J. Environ. Res. Public Health 2022, 19, 3887. [Google Scholar] [CrossRef]
- LaMorte, W.W. Online MPH and Teaching Public Health|SPH. Available online: https://www.bu.edu/sph/online-mph-and-teaching-public-health/ (accessed on 21 October 2025).
- Cho, M.-K.; Cho, Y.-H. Role of Perception, Health Beliefs, and Health Knowledge in Intentions to Receive Health Checkups among Young Adults in Korea. Int. J. Environ. Res. Public Health 2022, 19, 13820. [Google Scholar] [CrossRef]
- Ghorbani-Dehbalaei, M.; Loripoor, M.; Nasirzadeh, M. The Role of Health Beliefs and Health Literacy in Women’s Health Promoting Behaviours Based on the Health Belief Model: A Descriptive Study. BMC Womens Health 2021, 21, 421. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, Y.; Huang, Z.; Sun, X. Associations between Media Use, Self-Efficacy, and Health Literacy among Chinese Rural and Urban Elderly: A Moderated Mediation Model. Front. Public Health 2023, 11, 1104904. [Google Scholar] [CrossRef]
- Good, A.; Abraham, C. Can the Effectiveness of Health Promotion Campaigns Be Improved Using Self-Efficacy and Self-Affirmation Interventions? An Analysis of Sun Protection Messages. Psychol. Health 2011, 26, 799–818. [Google Scholar] [CrossRef] [PubMed]
- Ware, L.J.; Prioreschi, A.; Bosire, E.; Cohen, E.; Draper, C.E.; Lye, S.J.; Norris, S.A. Environmental, Social, and Structural Constraints for Health Behavior: Perceptions of Young Urban Black Women During the Preconception Period-A Healthy Life Trajectories Initiative. J. Nutr. Educ. Behav. 2019, 51, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S. Analysis of the Impact of Health Beliefs and Resource Factors on Preventive Behaviors against the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 8666. [Google Scholar] [CrossRef] [PubMed]
- Moorman, C.; van Heerde, H.J.; Moreau, C.P.; Palmatier, R.W. Marketing in the Health Care Sector: Disrupted Exchanges and New Research Directions. J. Mark. 2024, 88, 1–14. [Google Scholar] [CrossRef]
- Higgins, T.; Larson, E.; Schnall, R. Unraveling the Meaning of Patient Engagement: A Concept Analysis. Patient Educ. Couns. 2017, 100, 30–36. [Google Scholar] [CrossRef]
- Wu, J.; Fan, S.; Zhao, J.L. Community Engagement and Online Word of Mouth: An Empirical Investigation. Inf. Manag. 2018, 55, 258–270. [Google Scholar] [CrossRef]
- Cao, Z.; Zheng, J.; Liu, R. Factors Affecting Users’ Continuous Usage in Online Health Communities: An Integrated Framework of SCT and TPB. Healthcare 2023, 11, 1238. [Google Scholar] [CrossRef]
- Rollins, L.; Sy, A.; Crowell, N.; Rivers, D.; Miller, A.; Cooper, P.; Teague, D.; Jackson, C.; Henry Akintobi, T.; Ofili, E. Learning and Action in Community Health: Using the Health Belief Model to Assess and Educate African American Community Residents about Participation in Clinical Research. Int. J. Environ. Res. Public Health 2018, 15, 1862. [Google Scholar] [CrossRef]
- Rajpura, J.; Nayak, R. Medication Adherence in a Sample of Elderly Suffering from Hypertension: Evaluating the Influence of Illness Perceptions, Treatment Beliefs, and Illness Burden. J. Manag. Care Spec. Pharm. 2014, 20, 58–65. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Xu, Y.; Fang, J.; Liu, Y.; Liu, X.; Song, L. Exploring the Impact of Three-Dimensional Patient Satisfaction Structure on Adherence to Medication and Non-Pharmaceutical Treatment: A Cross-Sectional Study among Patients with Hypertension in Rural China. BMC Prim. Care 2025, 26, 51. [Google Scholar] [CrossRef]
- Hamad, A.A.; Ahmed, S.K. Understanding the Lower and Upper Limits of Sample Sizes in Clinical Research. Cureus 2025, 17, e76724. [Google Scholar] [CrossRef] [PubMed]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023; ISBN 978-1-4625-5191-0. [Google Scholar]
- Russo, G.M.; Tomei, P.A.; Serra, B.; Mello, S. Differences in the Use of 5- or 7-Point Likert Scale: An Application in Food Safety Culture. Organ. Cult. Int. J. 2021, 21, 1–17. [Google Scholar] [CrossRef]
- Wang, J.; Yao, T.; Wang, Y. Patient Engagement as Contributors in Online Health Communities: The Mediation of Peer Involvement and Moderation of Community Status. Behav. Sci. 2023, 13, 152. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Zhang, X.; Liu, L.; Ren, C. Converting Readers to Patients? From Free to Paid Knowledge-Sharing in Online Health Communities. Inf. Process. Manag. 2021, 58, 102490. [Google Scholar] [CrossRef]
- Hong, H.; Kim, H.J. Antecedents and Consequences of Information Overload in the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 9305. [Google Scholar] [CrossRef]
- Taibanguay, N.; Chaiamnuay, S.; Asavatanabodee, P.; Narongroeknawin, P. Effect of Patient Education on Medication Adherence of Patients with Rheumatoid Arthritis: A Randomized Controlled Trial. Patient Prefer. Adher. 2019, 13, 119–129. [Google Scholar] [CrossRef]
- Chan, A.H.Y.; Horne, R.; Hankins, M.; Chisari, C. The Medication Adherence Report Scale: A Measurement Tool for Eliciting Patients’ Reports of Nonadherence. Br. J. Clin. Pharmacol. 2020, 86, 1281–1288. [Google Scholar] [CrossRef]
- Shitu, K.; Adugna, A.; Kassie, A.; Handebo, S. Application of Health Belief Model for the Assessment of COVID-19 Preventive Behavior and Its Determinants among Students: A Structural Equation Modeling Analysis. PLoS ONE 2022, 17, e0263568. [Google Scholar] [CrossRef]
- Jebarajakirthy, C.; Das, M.; Rundle-Thiele, S.; Ahmadi, H. Communication Strategies: Encouraging Healthy Diets for on-the-Go Consumption. J. Consum. Mark. 2022, 40, 27–43. [Google Scholar] [CrossRef]
- Zhou, T. Understanding Online Health Community Users’ Information Adoption Intention: An Elaboration Likelihood Model Perspective. Online Inf. Rev. 2021, 46, 134–146. [Google Scholar] [CrossRef]
- Welton-Mitchell, C.; Dally, M.; Dickinson, K.L.; Morris-Neuberger, L.; Roberts, J.D.; Blanch-Hartigan, D. Influence of Mental Health on Information Seeking, Risk Perception and Mask Wearing Self-Efficacy during the Early Months of the COVID-19 Pandemic: A Longitudinal Panel Study across 6 U.S. States. BMC Psychol. 2023, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.D.-C.; Lui, J.N.-M. Factors Influencing Risk Perception during Public Health Emergencies of International Concern (PHEIC): A Scoping Review. BMC Public Health 2024, 24, 1372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Yin, J.; Song, Y. An Exploration of Rumor Combating Behavior on Social Media in the Context of Social Crises. Comput. Hum. Behav. 2016, 58, 25–36. [Google Scholar] [CrossRef]
- Delfino, S.; Larson, A.; Haines, D.; Grell, R. World-Class Innovation, but at What Cost? A Brief Examination of the American Healthcare System. Cureus 2023, 15, e39922. [Google Scholar] [CrossRef]
- Thompson, G.A.; Segura, J.; Cruz, D.; Arnita, C.; Whiffen, L.H. Cultural Differences in Patients’ Preferences for Paternalism: Comparing Mexican and American Patients’ Preferences for and Experiences with Physician Paternalism and Patient Autonomy. Int. J. Environ. Res. Public Health 2022, 19, 10663. [Google Scholar] [CrossRef]
- Cutler, D.M.; Scott Morton, F. Hospitals, Market Share, and Consolidation. JAMA 2013, 310, 1964–1970. [Google Scholar] [CrossRef]
- Kuipers, M.F.; Konus, U.; Brundel, B.J.J.M.; İlker Birbil, Ş. Communication Strategies Driving Online Health Community Patient Awareness and Engagement Investigated within Atrial Fibrillation Context. NPJ Digit. Med. 2025, 8, 446. [Google Scholar] [CrossRef]
- Bidargaddi, N.; Almirall, D.; Murphy, S.; Nahum-Shani, I.; Kovalcik, M.; Pituch, T.; Maaieh, H.; Strecher, V. To Prompt or Not to Prompt? A Microrandomized Trial of Time-Varying Push Notifications to Increase Proximal Engagement With a Mobile Health App. JMIR Mhealth Uhealth 2018, 6, e10123. [Google Scholar] [CrossRef]
- Son, Y.-J.; Kim, S.-W.; Lee, W.-S.; Won, H.; Cho, J.H.; Hong, J.; Choi, H.-J.; Kim, D.-Y.; Lim, A.; Kim, H.M. The Effects of a 24-Week Interactive Text Message-Based Mobile Health Intervention for Enhancing Self-Care Behaviours of Patients with Heart Failure: A Quasi-Experimental Study. Nurs. Open 2023, 10, 6309–6319. [Google Scholar] [CrossRef]
- Zimmermann, B.M.; Fanderl, J.; Koné, I.; Rabaglio, M.; Bürki, N.; Shaw, D.; Elger, B. Examining Information-Seeking Behavior in Genetic Testing for Cancer Predisposition: A Qualitative Interview Study. Patient Educ. Couns. 2021, 104, 257–264. [Google Scholar] [CrossRef]
- Constantino, M.J.; Coyne, A.E.; Boswell, J.F.; Iles, B.R.; Vîslă, A. A Meta-Analysis of the Association between Patients’ Early Perception of Treatment Credibility and Their Posttreatment Outcomes. Psychotherapy 2018, 55, 486–495. [Google Scholar] [CrossRef]
- Dear, B.F. Credibility and Expectations: Important Factors for Understanding Clinical Response, Treatment Completion, and Dropout in Internet-Delivered Psychological Interventions. J. Consult. Clin. Psychol. 2025, 93, 595–608. [Google Scholar] [CrossRef]
- Fayn, M.-G.; des Garets, V.; Rivière, A. Collective Empowerment of an Online Patient Community: Conceptualizing Process Dynamics Using a Multi-Method Qualitative Approach. BMC Health Serv. Res. 2021, 21, 958. [Google Scholar] [CrossRef]
- Pick, C.M. OPEN Fundamental Social Motives Data Descriptor Measured across Forty-Two Cultures in Two Waves. Sci. Data 2022, 9, 499. [Google Scholar]

| Number | Hypothesis |
|---|---|
| H1: | Higher perceived threat perception will result in a more positive PAAT. |
| H2: | Higher perceived behavioral evaluation will result in a more positive PAAT. |
| H3: | More frequent visits on the OHP will positively increase PAAT through both mediators perceived threat and perceived behavioral evaluation. |
| H4: | Longer sessions on the OHP will positively increase PAAT through both mediators perceived threat perception and perceived behavioral evaluation. |
| H5: | More content types consumed on the OHP will positively increase PAAT through both mediators perceived threat perception and perceived behavioral evaluation. |
| H6: | Higher perceived effectiveness will positively increase PAAT through primarily perceived threat perception. |
| Question | Response | The Netherlands, N (%) | United States, N (%) | |
|---|---|---|---|---|
| Q2: | Online health platform use | Yes | 139 (52.7) | 218 (73.9) |
| No | 155 (47.3) | 78 (26.1) | ||
| Q3: | Time since AF diagnosis | <1 year | 10 (3.4) | 15 (5.1) |
| 1–3 years | 82 (27.9) | 52 (17.6) | ||
| 3–5 years | 47 (16.0) | 44 (14.9) | ||
| 5–10 years | 65 (22.1) | 83 (28.1) | ||
| >10 years | 88 (29.9) | 100 (33.9) | ||
| Not officially diagnosed | 2 (0.7) | 1 (0.3) | ||
| Q4: | Use of AF medication | Yes | 229 (77.9) | 215 (72.9) |
| No | 62 (21.1) | 75 (25.4) | ||
| Don’t know | 3 (1.0) | 4 (1.4) | ||
| Q5: | Use of blood thinners | Yes | 227 (77.2) | 230 (78.0) |
| No | 67 (21.1) | 64 (21.7) | ||
| Don’t know | 0 (0) | 1 (0.3) | ||
| Q6: | Electric cardioversion | Yes | 156 (53.1) | 158 (53.6) |
| No | 138 (46.9) | 137 (46.4) | ||
| Q7: | Catheter ablation | Yes | 100 (34.0) | 153 (51.9) |
| No | 194 (66.0) | 142 (48.1) | ||
| Q8: | Surgical ablation | Yes | 56 (19.0) | 38 (12.9) |
| No | 238 (81.0) | 257 (87.1) | ||
| M | SD | 1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | |
|---|---|---|---|---|---|---|---|---|---|---|
| 5.6797 | 0.9711 | (0.709) | |||||||
| 5.4174 | 1.065 | 0.242 ** | (0.764) | ||||||
| 0.5008 | 0.50042 | 0.407 ** | 0.304 ** | - | |||||
| 1.8509 | 1.0144 | 0.162 ** | −0.001 a | 0.114 ** | - | ||||
| 1.8183 | 1.1078 | 0.210 ** | 0.006 a | 0.278 ** | 0.394 ** | - | |||
| 1.64 | 0.732 | 0.182 ** | −0.025 a | 0.098 * | 0.409 ** | 0.146 ** | - | ||
| 5.38 | 1.841 | 0.129 ** | 0.377 ** | 0.213 ** | 0.028 a | 0.022 a | 0.001 ** | - | |
| 4.3693 | 1.0470 | 0.390 ** | 0.009 a | 0.344 ** | 0.390 ** | 0.438 ** | 0.284 ** | 0.165 ** | (0.925) |
| Path 1 (a1) | Path 2 (a2) | Path 3 (b1b2c’) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Threat Perception | Behavioral Evaluation | PAAT | |||||||
| (SD) | (SD) | (SD) | |||||||
| Constant | 4.664 * | 31.775 | <0.000 | 4.326 * | 27.775 | <0.000 | 2.070 * | 7.449 | <0.000 |
| (0.147) | - | - | (0.156) | - | - | (0.278) | - | - | |
| Content on OHP | 0.034 a | 0.802 | 0.442 | 0.025 a | 0.555 | 0.579 | 0.197 * | 4.955 | <0.000 |
| (0.042) | - | - | (0.045) | - | - | (0.040) | - | - | |
| Perceived Effectiveness | 0.0320 a | 1.597 | 0.110 | 0.190 * | 8.926 | <0.000 | 0.083 * | 4.124 | <0.000 |
| (0.02) | - | - | (0.021) | - | - | (0.020) | - | - | |
| Country of Residence | 0.695 * | 8.972 | <0.000 | 0.539 * | 6.563 | <0.000 | 0.340 * | 4.234 | <0.000 |
| (0.077) | - | - | (0.082) | - | - | (0.080) | - | - | |
| Visits on OHP | 0.070 a | 1.910 | 0.056 | −0.072 a | −1.834 | 0.067 | 0.239 * | 6.839 | <0.000 |
| (0.037) | - | - | (0.039) | - | - | (0.035) | - | - | |
| Time spent on OHP | 0.165 * | 3.025 | 0.002 | −0.072 a | −1.243 | 0.214 | 0.154 * | 2.976 | <0.000 |
| (0.054) | - | - | (0.058) | - | - | (0.052) | - | - | |
| Threat Perception (M1) | 0.254 * | 6.525 | <0.000 | ||||||
| (0.039) | - | - | |||||||
| Behavioral Evaluation (M2) | −0.153 * | −4.159 | <0.003 | ||||||
| (0.037) | - | - | |||||||
| Indirect Through Threat Perception | Indirect Through Behavioral Evaluation | Total Indirect Effect on Patient Attitudes Towards AF Treatments | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| SD | SD | SD | Sig. | R2 | |||||||
| Content types consumed | 0.00864 | 0.010 | 0.377 | −0.003823 | 0.006 | 0.160 | 0.004815 | 0.010 | 0.466 | No | |
| Perceived Effectiveness | 0.00813 | 0.006 | 0.166 | −0.029070 | 0.021 | 0.120 | −0.020942 | 0.023 | 0.372 | No | |
| Country of Residence | 0.17663 | 0.032 | <0.001 | −0.082527 | 0.030 | 0.006 | 0.094103 | 0.037 | 0.010 | Yes | |
| Visits on OHP | 0.01778 | 0.009 | 0.055 | 0.011016 | 0.008 | 0.184 | 0.028796 | 0.010 | 0.006 | Yes | |
| Time spent on OHP | 0.04191 | 0.015 | 0.005 | 0.011016 | 0.018 | 0.117 | 0.052926 | 0.018 | 0.004 | Yes | |
| Total through M1 | 0.253 | 0.047 | <0.000 | Yes | 0.011 | ||||||
| Total through M2 | −0.093 * | 0.029 | 0.001 | Yes | 0.152 | ||||||
| Total indirect effect on Y | 0.160 * | 0.051 | 0.002 | Yes | 0.345 | ||||||
| Hypotheses | Results | |
|---|---|---|
| 1 | Higher perceived threat perception will result in a more positive PAAT. | Accepted |
| 2 | Higher perceived behavioral evaluation will result in a more positive PAAT. | Rejected |
| 3 | More frequent visits on the OHP will positively increase PAAT through both mediators perceived threat and perceived behavioral evaluation. | Accepted |
| 4 | Longer sessions on the OHP will positively increase PAAT through both mediators perceived threat perception and perceived behavioral evaluation. | Accepted |
| 5 | More content types consumed on the OHP will positively increase PAAT through both mediators perceived threat perception and perceived behavioral evaluation. | Rejected |
| 6 | Higher perceived effectiveness will positively increase PAAT through primarily perceived threat perception. | Rejected |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kuipers, M.F.; Snel, J.R.F.N.; Hills, M.T.; Brundel, B.J.J.M.; Konus, U. How Online Health Platform Engagement Shapes Atrial Fibrillation Treatment Attitudes: The Role of Psychological Mediators. Hearts 2026, 7, 3. https://doi.org/10.3390/hearts7010003
Kuipers MF, Snel JRFN, Hills MT, Brundel BJJM, Konus U. How Online Health Platform Engagement Shapes Atrial Fibrillation Treatment Attitudes: The Role of Psychological Mediators. Hearts. 2026; 7(1):3. https://doi.org/10.3390/hearts7010003
Chicago/Turabian StyleKuipers, Myrthe F., Joey R. F. N. Snel, Mellanie T. Hills, Bianca J. J. M. Brundel, and Umut Konus. 2026. "How Online Health Platform Engagement Shapes Atrial Fibrillation Treatment Attitudes: The Role of Psychological Mediators" Hearts 7, no. 1: 3. https://doi.org/10.3390/hearts7010003
APA StyleKuipers, M. F., Snel, J. R. F. N., Hills, M. T., Brundel, B. J. J. M., & Konus, U. (2026). How Online Health Platform Engagement Shapes Atrial Fibrillation Treatment Attitudes: The Role of Psychological Mediators. Hearts, 7(1), 3. https://doi.org/10.3390/hearts7010003

