Comparison of Cardiac Magnetic Resonance and Advanced Echocardiography in Evaluation of Patients with High Burden of Premature Ventricular Contractions and Normal Standard Echocardiography
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheriyath, P.; He, F.; Peters, I.; Li, X.A.; Alagona, P.; Wu, C.T.; Pu, M.; Cascio, W.E.; Liao, D.P. Relation of Atrial and/or Ventricular Premature Complexes on a Two-Minute Rhythm Strip to the Risk of Sudden Cardiac Death (the Atherosclerosis Risk in Communities [ARIC] Study). Am. J. Cardiol. 2011, 107, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, K.T.; Vittinghoff, E.; Dewland, T.A.; Dukes, J.W.; Soliman, E.Z.; Stein, P.K.; Gottdiener, J.S.; Alonso, A.; Chen, L.Y.; Psaty, B.M.; et al. Ectopy on a Single 12-Lead ECG, Incident Cardiac Myopathy, and Death in the Community. J. Am. Heart Assoc. 2017, 6, e006028. [Google Scholar] [CrossRef] [PubMed]
- Bikkina, M.; Larson, M.G.; Levy, D. Prognostic implications of asymptomatic ventricular arrhythmias: The Framingham Heart Study. Ann. Intern. Med. 1992, 117, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.; Hemingway, H.; Harb, R.; Crake, T.; Lambiase, P. The prognostic significance of premature ventricular complexes in adults without clinically apparent heart disease: A meta-analysis and systematic review. Heart 2012, 98, 1290–1298. [Google Scholar] [CrossRef]
- Ataklte, F.; Erqou, S.; Laukkanen, J.; Kaptoge, S. Meta-Analysis of Ventricular Premature Complexes and Their Relation to Cardiac Mortality in General Populations. Am. J. Cardiol. 2013, 112, 1263–1270. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Simpson, R.J., Jr.; Rautaharju, P.; Alonso, A.; Shahar, E.; Massing, M.; Saba, S.; Heiss, G. Relation of ventricular premature complexes to heart failure (from the Atherosclerosis Risk in Communities [ARIC] Study). Am. J. Cardiol. 2012, 109, 105–109. [Google Scholar] [CrossRef]
- Dukes, J.W.; Dewland, T.A.; Vittinghoff, E.; Mandyam, M.C.; Heckbert, S.R.; Siscovick, D.S.; Stein, P.K.; Psaty, B.M.; Sotoodehnia, N.; Gottdiener, J.S.; et al. Ventricular Ectopy as a Predictor of Heart Failure and Death. J. Am. Coll. Cardiol. 2015, 66, 101–109. [Google Scholar] [CrossRef]
- Kim, Y.G.; Choi, Y.Y.; Han, K.D.; Min, K.J.; Choi, H.Y.; Shim, J.; Choi, J.I.; Kim, Y.H. Premature ventricular contraction increases the risk of heart failure and ventricular tachyarrhythmia. Sci. Rep. 2021, 11, 12698. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chang, S.L.; Lin, Y.J.; Chen, Y.Y.; Lo, L.W.; Hu, Y.F.; Tuan, T.C.; Chao, T.F.; Chung, F.P.; Liao, J.N.; et al. An observational study on the effect of premature ventricular complex burden on long-term outcome. Medicine 2017, 96, e5476. [Google Scholar] [CrossRef]
- Scorza, R.; Jonsson, M.; Friberg, L.; Rosenqvist, M.; Frykman, V. Prognostic implication of premature ventricular contractions in patients without structural heart disease. Europace 2023, 25, 517–525. [Google Scholar] [CrossRef]
- Nomura, Y.; Seki, S.; Hazeki, D.; Ueno, K.; Tanaka, Y.; Masuda, K.; Nishibatake, M.; Yoshinaga, M. Risk factors for development of ventricular tachycardia in patients with ventricular premature contraction with a structurally normal heart. J. Arrhythm. 2020, 36, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.K.Y.; Andrade, J.; Hawkins, N.M.; Alexander, G.; Bennett, M.T.; Chakrabarti, S.; Laksman, Z.W.; Krahn, A.; Yeung-Lai-Wah, J.A.; Deyell, M.W. Outcomes of untreated frequent premature ventricular complexes with normal left ventricular function. Heart 2019, 105, 1408–1413. [Google Scholar] [CrossRef]
- Marcus, G.M. Evaluation and Management of Premature Ventricular Complexes. Circulation 2020, 141, 1404–1418. [Google Scholar] [CrossRef]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: Executive summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm 2018, 15, e190–e252. [Google Scholar]
- Wijnmaalen, A.P.; Delgado, V.; Schalij, M.J.; van Huls van Taxis, C.F.; Holman, E.R.; Bax, J.J.; Zeppenfeld, K. Beneficial effects of catheter ablation on left ventricular and right ventricular function in patients with frequent premature ventricular contractions and preserved ejection fraction. Heart 2010, 96, 1275–1280. [Google Scholar] [CrossRef]
- Scorza, R.; Shahgaldi, K.; Rosenqvist, M.; Frykman, V. Evaluation of patients with high burden of premature ventricular contractions by comprehensive transthoracic echocardiography. Int. J. Cardiol. Heart Vasc. 2022, 42, 101124. [Google Scholar] [CrossRef] [PubMed]
- Scorza, R.; Jansson, A.; Sorensson, P.; Rosenqvist, M.; Frykman, V. Magnetic Resonance Detects Structural Heart Disease in Patients with Frequent Ventricular Ectopy and Normal Echocardiographic Findings. Diagnostics 2021, 11, 1505. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, F.; Thibert, M.J.; Gulsin, G.S.; Murphy, D.; Alexander, G.; Andrade, J.G.; Hawkins, N.M.; Laksman, Z.W.; Yeung-Lai-Wah, J.A.; Chakrabarti, S.; et al. Cardiac Magnetic Resonance in the Evaluation of Patients with Frequent Premature Ventricular Complexes. JACC Clin. Electrophysiol. 2022, 8, 1122–1132. [Google Scholar] [CrossRef]
- Muser, D.; Santangeli, P.; Castro, S.A.; Arroyo, R.C.; Maeda, S.; Benhayon, D.A.; Liuba, I.; Liang, J.J.; Sadek, M.M.; Chahal, A.; et al. Risk Stratification of Patients with Apparently Idiopathic Premature Ventricular Contractions a Multicenter International CMR Registry. JACC-Clin. Electrophy 2020, 6, 722–735. [Google Scholar] [CrossRef]
- Lie, O.H.; Saberniak, J.; Dejgaard, L.A.; Stokke, M.K.; Hegbom, F.; Anfinsen, O.G.; Edvardsen, T.; Haugaa, K.H. Lower than expected burden of premature ventricular contractions impairs myocardial function. ESC Heart Fail. 2017, 4, 585–594. [Google Scholar] [CrossRef]
- Ling, Y.; Wan, Q.; Chen, Q.; Zhu, W. Assessment of subtle cardiac dysfunction in patients with frequent premature ventricular complexes by real-time three-dimensional speckle tracking echocardiography. Clin. Cardiol. 2017, 40, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef]
- Merckx, K.L.; De Vos, C.B.; Palmans, A.; Habets, J.; Cheriex, E.C.; Crijns, H.J.G.M.; Tieleman, R.G. Atrial activation time determined by transthoracic Doppler tissue imaging can be used as an estimate of the total duration of atrial electrical activation. J. Am. Soc. Echocardiog. 2005, 18, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Laplante, L.; Benzaquen, B.S. A Review of the Potential Pathogenicity and Management of Frequent Premature Ventricular Contractions. Pace-Pacing Clin. Electrophysiol. 2016, 39, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Echt, D.S.; Liebson, P.R.; Mitchell, L.B.; Peters, R.W.; Obias-Manno, D.; Barker, A.H.; Arensberg, D.; Baker, A.; Friedman, L.; Greene, H.L.; et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 1991, 324, 781–788. [Google Scholar] [CrossRef]
- Nucifora, G.; Aquaro, G.D.; Masci, P.G.; Pingitore, A.; Lombardi, M. Magnetic resonance assessment of prevalence and correlates of right ventricular abnormalities in isolated left ventricular noncompaction. Am. J. Cardiol. 2014, 113, 142–146. [Google Scholar] [CrossRef]
- Ghannam, M.; Siontis, K.C.; Kim, M.H.; Cochet, H.; Jais, P.; Eng, M.J.; Attili, A.; Sharaf-Dabbagh, G.; Latchamsetty, R.; Jongnarangsin, K.; et al. Risk stratification in patients with frequent premature ventricular complexes in the absence of known heart disease. Heart Rhythm 2020, 17, 423–430. [Google Scholar] [CrossRef]
- Gerstenfeld, E.P. Should CMR Be Performed for Every Patient with Frequent Premature Ventricular Contractions? COMMENT. JACC-Clin. Electrophy 2022, 8, 1133–1135. [Google Scholar] [CrossRef]
- Chen, C.H.; Fetics, B.; Nevo, E.; Rochitte, C.E.; Chiou, K.R.; Ding, P.A.; Kawaguchi, M.; Kass, D.A. Noninvasive single-beat determination of left ventricular end-systolic elastance in humans. J. Am. Coll. Cardiol. 2001, 38, 2028–2034. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Aboyans, V.; Blacher, J.; Brodmann, M.; Brutsaert, D.L.; Chirinos, J.A.; De Carlo, M.; Delgado, V.; Lancellotti, P.; Lekakis, J.; et al. The role of ventricular-arterial coupling in cardiac disease and heart failure: Assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur. J. Heart Fail. 2019, 21, 402–424. [Google Scholar] [PubMed]
- Ikonomidis, I.; Katsanos, S.; Triantafyllidi, H.; Parissis, J.; Tzortzis, S.; Pavlidis, G.; Trivilou, P.; Makavos, G.; Varoudi, M.; Frogoudaki, A.; et al. Pulse wave velocity to global longitudinal strain ratio in hypertension. Eur. J. Clin. Investig. 2019, 49, e13049. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.; D’hooge, J.; Kloch-Badelek, M.; Sakiewicz, W.; Thijs, L.; Staessen, J.A. Impact of Hypertension on Ventricular-Arterial Coupling and Regional Myocardial Work at Rest and during Isometric Exercise. J. Am. Soc. Echocardiog. 2012, 25, 882–890. [Google Scholar] [CrossRef]
- Zito, C.; Fabiani, I.; La Carrubba, S.; Carerj, L.; Citro, R.; Benedetto, F.; Di Bello, V.; Canterin, F.A.; Monte, I.; Carerj, S.; et al. Diabetes mellitus and ventriculo-arterial coupling. Eur. Heart J. 2017, 38, 931. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschope, C. A Novel Paradigm for Heart Failure with Preserved Ejection Fraction Comorbidities Drive Myocardial Dysfunction and Remodeling Through Coronary Microvascular Endothelial Inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Tzortzis, S.; Papaioannou, T.; Protogerou, A.; Stamatelopoulos, K.; Papamichael, C.; Zakopoulos, N.; Lekakis, J. Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension. J. Hum. Hypertens. 2008, 22, 687–698. [Google Scholar] [CrossRef]
- Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global Longitudinal Strain to Ejection Fraction. JACC Cardiovasc. Imaging 2018, 11, 260–274. [Google Scholar] [CrossRef]
- Benyounes, N.; Lang, S.; Soulat-Dufour, L.; Obadia, M.; Gout, O.; Chevalier, G.; Cohen, A. Can global longitudinal strain predict reduced left ventricular ejection fraction in daily echocardiographic practice? Arch. Cardiovasc. Dis. 2015, 108, 50–56. [Google Scholar] [CrossRef]
- Tanaka, H. Efficacy of echocardiography for differential diagnosis of left ventricular hypertrophy: Special focus on speckle-tracking longitudinal strain. J. Echocardiogr. 2021, 19, 71–79. [Google Scholar] [CrossRef]
- Bispo, J.P.D.; Azevedo, P.; Freitas, P.; Marques, N.; Reis, C.; Horta, E.; Trabulo, M.; Abecasis, J.; Canada, M.; Ribeiras, R.; et al. Mechanical Dispersion as a powerful echocardiographic predictor of outcomes after Myocardial Infarction. Eur. Heart J. 2020, 41, 126. [Google Scholar]
- Candan, O.; Gecmen, C.; Bayam, E.; Guner, A.; Celik, M.; Dogan, C. Mechanical dispersion and global longitudinal strain by speckle tracking echocardiography: Predictors of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy. Echocardiography 2017, 34, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Favot, M.; Ehrman, R.; Gowland, L.; Sullivan, A.; Reed, B.; Abidov, A.; Levy, P. Changes in speckle-tracking-derived mechanical dispersion index are associated with 30-day readmissions in acute heart failure. Ultrasound J. 2019, 11, 9. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, R.H.; Collins, S.M.; Skorton, D.J.; Ericksen, E.E.; Conyers, D. Assessment of Fibrosis in Infarcted Human Hearts by Analysis of Ultrasonic Backscatter. Circulation 1985, 71, 740–744. [Google Scholar] [CrossRef]
- Hall, C.S.; Scott, M.J.; Lanza, G.M.; Miller, J.G.; Wickline, S.A. The extracellular matrix is an important source of ultrasound backscatter from myocardium. J. Acoust. Soc. Am. 2000, 107, 612–619. [Google Scholar] [CrossRef]
- Ciulla, M.; Paliotti, R.; Hess, D.B.; Tjahja, E.; Campbell, S.E.; Magrini, F.; Weber, K.T. Echocardiographic patterns of myocardial fibrosis in hypertensive patients: Endomyocardial biopsy versus ultrasonic tissue characterization. J. Am. Soc. Echocardiog. 1997, 10, 657–664. [Google Scholar] [CrossRef]
Clinical Characteristics | n = 39 | % |
---|---|---|
Women | 22 | 56.4 |
Age, median (IQR) 1 | 64 (45–74) | |
Hypertension | 11 | 28.2 |
Paroxysmal atrial fibrillation | 5 | 12.8 |
Systolic blood pressure, mmHg, mean ± SD 2 | 136 ± 18 | |
Body surface area, m2, mean ± SD | 1.91 ± 0.2 |
Standard Echocardiographic Parameters | Value |
Stroke volume index (mL/m2) | 39.63 (36.51–45.41) |
LV 1 ejection fraction (%) | 58.1 ± 2.4 |
TAPSE 2 (mm) | 24 ± 2.8 |
LV end-systolic volume (mL) | 46.9 ± 11 |
LV end-diastolic volume (mL) | 111.9 ± 24.7 |
Additional Echocardiographic Parameters | Value |
LV global longitudinal strain (%) | −17.9 ± 2.4 |
Mechanical dispersion (ms) | 47.5 (39–59.5) |
VA 3 coupling | 0.62 ± 0.25 |
Integrated backscatter (dB) | −16.9 ± 5.4 |
Left atrial activation time (ms) | 133.1 ± 18.6 |
CMR-Obtained Parameters | Value |
---|---|
LV 1 ejection fraction (%) | 55 (53.5–59) |
LV stroke volume (mL) | 89 ± 20 |
LV end-systolic volume (mL) | 73.2 ± 20.6 |
LV end-diastolic volume (mL) | 162.7 ± 37.8 |
RV 2 ejection fraction (%) | 56 (53–60) |
RV stroke volume (mL) | 84 ± 22 |
RV end-systolic volume (mL) | 68 ± 22 |
RV end-diastolic volume (mL) | 155.2 ± 41.7 |
Clinical Characteristics | CMR Findings | No CMR Findings | p-Value |
---|---|---|---|
Age (years) | 57.9 | 60.5 | 0.46 |
Systolic blood pressure (mmHg) | 138.75 | 135.2 | 0.75 |
Diastolic blood pressure (mmHg) | 77.92 | 77.5 | 0.82 |
Body surface area (m2) | 1.83 | 1.95 | 0.35 |
PVC 1 burden (PVCs/day) | 22,800 | 17,900 | 0.05 |
Echocardiographic parameters | |||
Septal wall thickness (mm) | 9.83 | 9.59 | 0.63 |
LV 2 mass index (g/m2) | 78.67 | 71.96 | 0.3 |
LA 3 volume index (mL/m2) | 33.75 | 30.55 | 0.22 |
LV global longitudinal strain (%) | −17.49 | −18.05 | 0.15 |
LA activation time (ms) | 133.64 | 132.88 | 0.06 |
Integrated backscatter (dB) | −18.4 | −16.37 | 0.75 |
VA 4 coupling | 0.68 | 0.59 | 0.57 |
Mechanical dispersion (ms) | 66.71 | 49.19 | 0.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wickzén, O.; Sundqvist, M.; Scorza, R. Comparison of Cardiac Magnetic Resonance and Advanced Echocardiography in Evaluation of Patients with High Burden of Premature Ventricular Contractions and Normal Standard Echocardiography. Hearts 2024, 5, 365-374. https://doi.org/10.3390/hearts5030026
Wickzén O, Sundqvist M, Scorza R. Comparison of Cardiac Magnetic Resonance and Advanced Echocardiography in Evaluation of Patients with High Burden of Premature Ventricular Contractions and Normal Standard Echocardiography. Hearts. 2024; 5(3):365-374. https://doi.org/10.3390/hearts5030026
Chicago/Turabian StyleWickzén, Oscar, Martin Sundqvist, and Raffaele Scorza. 2024. "Comparison of Cardiac Magnetic Resonance and Advanced Echocardiography in Evaluation of Patients with High Burden of Premature Ventricular Contractions and Normal Standard Echocardiography" Hearts 5, no. 3: 365-374. https://doi.org/10.3390/hearts5030026
APA StyleWickzén, O., Sundqvist, M., & Scorza, R. (2024). Comparison of Cardiac Magnetic Resonance and Advanced Echocardiography in Evaluation of Patients with High Burden of Premature Ventricular Contractions and Normal Standard Echocardiography. Hearts, 5(3), 365-374. https://doi.org/10.3390/hearts5030026