Charge Transfer Rates Controlled by Frequency Dispersion of Double-Layer Capacitances
Abstract
1. Introduction
- (a)
- Change in the charge of a redox molecule by a high electric field at the electrode–solution interface;
- (b)
- Formation of a dipole by a counterion for charge neutralization;
- (c)
- Rearrangement in terms of solvent dipoles for stabilization, like in the DLC;
- (d)
- Current is produced by the flux of the redox concentration at the electrode.
2. Theory
2.1. Kinetic Equation with Dipole Interaction
2.2. AC Impedance
2.3. Contribution of Negative Capacitance
3. Experimental Results and Discussion
3.1. Voltammetric Features
3.2. Subtraction of the DLC
3.3. Subtraction of Negative Capacitive Currents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clegg, A.D.; Rees, N.V.; Klymenko, O.V.; Coles, B.A.; Compton, R.G. Marcus theory of outer-sphere heterogeneous electron transfer reactions: High precision steady-state measurements of the standard electrochemical rate constant for ferrocene derivatives in alkyl cyanide solvents. J. Electroanal. Chem. 2005, 580, 78–86. [Google Scholar] [CrossRef]
- Rathinavel, S.; Priyadharshini, K.; Panda, D. A review on carbon nanotube: An overview of synthesis, properties, functionalization, characterization, and the application. Mater. Sci. Eng. B 2021, 268, 115095. [Google Scholar] [CrossRef]
- Bergin, S.D.; Sun, Z.; Rickard, D.; Streich, P.V.; Hamilton, J.P.; Coleman, J.N. Multicomponent Solubility Parameters for Single-Walled Carbon Nanotube−Solvent Mixtures. ACS Nano 2009, 3, 2340–2350. [Google Scholar] [CrossRef]
- Bone, J.M.; Jenkins, J.L. Understanding Polymer Electrodeposition and Conducting Polymer Modified Electrodes Using Electrochemistry, Spectroscopy, and Scanning Probe Microscopy. J. Chem. Educ. 2023, 100, 4062–4071. [Google Scholar] [CrossRef] [PubMed]
- Gmucova, K. Fundamental aspects of organic conductive polymers as electrodes. Cur. Opin. Electrochem. 2022, 36, 101117. [Google Scholar] [CrossRef]
- Vagin, M.; Che, C.; Gueskine, V.; Berggren, M.; Crispin, X. Ion-Selective Electrocatalysis on Conducting Polymer Electrodes: Improving the Performance of Redox Flow Batteries. Adv. Funct Mater. 2020, 30, 2007009. [Google Scholar] [CrossRef]
- Romadina, E.I.; Stevenson, K.J. Small-Molecule Organics for Redox Flow Batteries—Creation of Highly-Soluble and Stable Compounds. Electrochim. Acta 2023, 461, 142670. [Google Scholar] [CrossRef]
- Liao, H.; Zhong, W.; Li, T.; Han, J.; Sun, X.; Tong, X.; Zhang, Y. A review of self-healing electrolyte and their applications in flexible/stretchable energy storage devices. Electrochim. Acta 2022, 404, 139730. [Google Scholar] [CrossRef]
- Belgibayeva, A.; Rakhmetova, A.; Rakhatkyzy, M.; Kairova, M.; Mukushev, I.; Issatayev, N.; Kalimuldina, G.; Nurpeissova, A.; Sun, Y.-K.; Bakenov, Z. Lithium-ion batteries for low-temperature applications: Limiting factors and solutions. J. Power Sour. 2023, 557, 232550. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef]
- Lay, P.A. Specific hydrogen-bonding contributions to the thermodynamics and kinetics of electron transfer. Modifications to the classical and semiclassical theories of electron transfer. J. Phys. Chem. 1986, 90, 878–885. [Google Scholar] [CrossRef]
- Barton, A.F.M. Solubility parameters. Chem. Rev. 1975, 75, 731–753. [Google Scholar] [CrossRef]
- Noviandri, I.; Brown, K.N.; Fleming, D.S.; Gulyas, P.T.; Lay, P.A.; Masters, A.F.; Phillips, L. The Decamethylferrocenium/Decamethylferrocene Redox Couple: A Superior Redox Standard to the Ferrocenium/Ferrocene Redox Couple for Studying Solvent Effects on the Thermodynamics of Electron Transfer. J. Phys. Chem. B 1999, 103, 6713–6722. [Google Scholar] [CrossRef]
- Hupp, J.T. The Ferrocene Assumption in Redox Thermodynamics: Implications from Optical Intervalence Studies of Ion Pairing to Ferrocenium. Inorg. Chem. 1990, 29, 5010–5012. [Google Scholar] [CrossRef]
- Dubois, D.; Moninot, G.; Kutner, W.; Jones, M.T.; Kadish, K.M. Electroreduction of Buckminsterfullerene, C60, in aprotic solvents. Solvent, supporting electrolyte, and temperature effects. J. Phys. Chem. 1992, 96, 7137–7145. [Google Scholar] [CrossRef]
- Soucaze-Guillous, B.; Kutner, W.; Jones, M.T.; Kadish, K.M. Electroreduction of C60 in Aprotic Solvents: III. Voltammetric Study, at Microelectrode, of (n = 0 to 4) Solvation in the Absence of Supporting Electrolyte. J. Electrochem. Soc. 1996, 143, 550–556. [Google Scholar] [CrossRef]
- Noviandri, I.; Bolskar, R.D.; Lay, P.A.; Reed, C.A. Solvent Effects on the Electrochemistry of C60. Thermodynamics of Solvation of C60 and Fullerides. J. Phys. Chem. B 1997, 101, 6350–6358. [Google Scholar] [CrossRef]
- Korchagin, O.V.; Bogdanovskaya, V.A.; Tripachev, O.V. Changes in double layer capacitance of the positive electrode in Li-O2 battery during discharge: Effect of active material and aprotic electrolyte solvent. J. Electroanal. Chem. 2023, 948, 117815. [Google Scholar] [CrossRef]
- Hou, Y.; Aoki, K.; Chen, J.; Nishiumi, T. Solvent Variables Controlling Electric Double Layer Capacitance at the Metal–Solution Interface. J. Phys. Chem. C 2014, 118, 10153–10158. [Google Scholar] [CrossRef]
- Silvester, D.S.; Jamil, R.; Doblinger, S.; Zhang, Y.; Atkin, R.; Li, H. Electrical Double Layer Structure in Ionic Liquids and Its Importance for Supercapacitor, Battery, Sensing, and Lubrication Applications. J. Phys. Chem. C 2021, 125, 13707–13720. [Google Scholar] [CrossRef]
- Arulepp, M.; Permann, L.; Leis, J.; Perkson, A.; Rumma, K.; Janes, A.; Lust, E. Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sour. 2004, 133, 320–328. [Google Scholar] [CrossRef]
- Zagrebin, P.A.; Buchner, R.; Nazmutdinov, R.R.; Tsirlina, G.A. Dynamic solvent effects in electrochemical kinetics: Indications for a switch of the relevant solvent mode. J. Phys. Chem. B 2010, 114, 311–320. [Google Scholar] [CrossRef]
- Weaver, M.J. Dynamical Solvent Effects on Activated Electron-Transfer Reactions: Principles, Pitfalls, and Progresst. Chemical Reviews 1992, 92, 463–480. [Google Scholar] [CrossRef]
- Weaver, M.J.; McManis III, G.E. Dynamical solvent effects on electron-transfer processes: Recent progress and perspectives. Acc. Chem. Res. 1990, 23, 294–300. [Google Scholar] [CrossRef]
- Nazmutdinov, R.R.; Dudkina, Y.B.; Zinkicheva, T.T.; Budnikova, Y.H.; Probst, M. Ligand and solvent effects on the kinetics of the electrochemical reduction of Ni(II) complexes: Experiment and quantum chemical modeling. Electrochim. Acta 2021, 395, 139138. [Google Scholar] [CrossRef]
- Fawcett, W.R.; Opallo, M. Possible experimental evidence for molecular solvation effects in simple heterogeneous electron-transfer reactions. J. Phys. Chem. 1992, 96, 2920–2924. [Google Scholar] [CrossRef]
- Black, A.W.; Bartlett, P.N. Selection and characterisation of weakly coordinating solvents for semiconductor electrodeposition. Phys. Chem. Chem. Phys. 2022, 24, 8093–8103. [Google Scholar] [CrossRef]
- Black, A.W.; Zhang, W.; Reid, G.; Bartlett, P.N. Diffusion in weakly coordinating solvents. Electrochim. Acta 2022, 425, 140720. [Google Scholar] [CrossRef]
- Lasia, A. The Origin of the Constant Phase Element. J. Phys. Chem. Lett. 2022, 13, 580–589. [Google Scholar] [CrossRef]
- Aoki, K.J. Molecular interaction model for frequency-dependence of double layer capacitors. Electrochim. Acta 2016, 188, 545–550. [Google Scholar] [CrossRef]
- Aoki, K.J. Frequency-dependence of electric double layer capacitance without Faradaic reactions. J. Electroanal. Chem. 2016, 779, 117–125. [Google Scholar] [CrossRef]
- Lasia, A. Modern Aspects of Electrochemistry, 32; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; p. 143. [Google Scholar]
- Brug, G.J.; Van den Eeden, A.L.G.; Sluyters-Rehbach, M.; Sluyters, J.H. The analysis of electrode impedances complicated by the presence of a constant phase element. J. Electroanal. Chem. 1984, 176, 275–295. [Google Scholar] [CrossRef]
- Nyikos, L.; Pajkossy, T. Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 1985, 30, 1533–1540. [Google Scholar] [CrossRef]
- Zoltowski, P. On the electrical capacitance of interfaces exhibiting constant phase element behavior. J. Electroanal. Chem. 1998, 443, 149–154. [Google Scholar] [CrossRef]
- Schalenbach, M.; Durmus, Y.E.; Robinson, S.A.; Tempel, H.; Kungl, H.; Eichel, R.-A. Physicochemical Mechanisms of the Double-Layer Capacitance Dispersion and Dynamics: An Impedance Analysis. J. Phys. Chem. C 2021, 125, 5870–5879. [Google Scholar] [CrossRef]
- Pajkossy, T.; Jurczakowski, R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. Electrochem. 2017, 1, 53–58. [Google Scholar] [CrossRef]
- Atkins, P.; Paula, J.D. Atkin’s Physical Chemistry, 10th ed.; Oxford University Press: Oxford, UK, 2023; pp. 811, 896–899, 915. [Google Scholar]
- Liu, Y.; Aoki, K.J.; Chen, J. Similarity of Heterogeneous Kinetics to Delay of Double-Layer Capacitance Using Chronoamperometry. Electrochem 2023, 4, 301–312. [Google Scholar] [CrossRef]
- Aoki, K.J.; Liu, Y.; Chen, J. Delay of reaching the Nernst equilibrium by ac-impedance. J. Solid State Electrochem. 2024, 28, 4503–4510. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods, 2nd ed.; Kohn Wiley & Sons: New York, NY, USA, 2001; pp. 381, 384–385. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoki, K.J.; Chen, J. Charge Transfer Rates Controlled by Frequency Dispersion of Double-Layer Capacitances. Electrochem 2025, 6, 32. https://doi.org/10.3390/electrochem6030032
Aoki KJ, Chen J. Charge Transfer Rates Controlled by Frequency Dispersion of Double-Layer Capacitances. Electrochem. 2025; 6(3):32. https://doi.org/10.3390/electrochem6030032
Chicago/Turabian StyleAoki, Koichi Jeremiah, and Jingyuan Chen. 2025. "Charge Transfer Rates Controlled by Frequency Dispersion of Double-Layer Capacitances" Electrochem 6, no. 3: 32. https://doi.org/10.3390/electrochem6030032
APA StyleAoki, K. J., & Chen, J. (2025). Charge Transfer Rates Controlled by Frequency Dispersion of Double-Layer Capacitances. Electrochem, 6(3), 32. https://doi.org/10.3390/electrochem6030032