Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Apparatus
2.2. SiO-CeONPs Synthesis
2.3. Modification of GCE/SiO-CeONCs
2.4. Preparation of Sample for Detection of H2O2 by DPV
2.5. Electrochemical Measurements Procedure
3. Results and Discussion
3.1. SEM of SiO-CeONPs
3.2. Electrochemical Characterization and Kinetics Studies
3.3. Evaluation of pH on Analytical Performance
3.4. Sensors Parameters
3.4.1. Linearity and Detection Limit
3.4.2. Detection of H2O2 in Real Samples and Recovery Tests
3.4.3. Sensor Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-Sánchez, M.I.; González-Macia, L.; Pérez-Prior, M.T.; Valero, E.; Hancock, J.; Killard, A.J. Electrochemical Detection of Extracellular Hydrogen Peroxide in Arabidopsis Thaliana: A Real-Time Marker of Oxidative Stress. Plant Cell Environ. 2013, 36, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, S.; Ren, Q.Q.; Wen, W.; Zhao, Y.D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, Y.; Yin, Y. Facile Fabrication of a Gold Nanocluster-Based Membrane for the Detection of Hydrogen Peroxide. Sensors 2016, 16, 1124. [Google Scholar] [CrossRef]
- Niu, X.; Lan, M.; Zhao, H.; Chen, C. Highly sensitive and selective Nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal. Chem. 2013, 85, 3561–3569. [Google Scholar] [CrossRef]
- Tanabe, K.; Yamaguchib, T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides. Catal. Today 1994, 20, 185–197. [Google Scholar] [CrossRef]
- Soled, S.; McVicker, G. Acidity of silica-substituted zirconia. Catal. Today 1992, 14, 189–194. [Google Scholar] [CrossRef]
- He, H. Metal oxide semiconductors and conductors. Solut. Process. Met. Oxide Thin Film. Electron. Appl. 2020, 1, 7–30. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Frolov, D.D.; Masunov, A.E.; Seal, S. Structure and properties of cerium oxides in bulk and nanoparticulate forms. J. Alloys Compd. 2014, 584, 199–208. [Google Scholar] [CrossRef]
- Sun, C.; Hong, L.; Chen, L. Nanostructured ceria-based materials: Synthesis, properties, and applications. Energy Environ. Sci. 2012, 5, 8475. [Google Scholar] [CrossRef]
- Skorodumova, N.V.; Simak, S.I.; Lundqvist, B.I.; Abrikosov, I.A.; Johansson, B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 2002, 89, 166601. [Google Scholar] [CrossRef]
- Polina, A.; Tabachkova, N.Y.; Stenina, I.A.; Yaroslavtsev, Y.B. Properties of ceria nanoparticles with surface modified by acidic group. J. Nanopart. Res. 2020, 22, 318. [Google Scholar] [CrossRef]
- Bracamonte, M.V.; Melchionna, M.; Giuliani, A.; Nasi, L.; Tavagnacco, C.; Prato, M.; Fornasiero, P. H2O2 sensing enhancement by mutual integration of single walled carbon nanohorns with metal oxide catalysts: The CeO2 case. Sens. Actuators B Chem. 2017, 239, 923–932. [Google Scholar] [CrossRef]
- Iler, R.K. Adsorption of colloidal silica on alumina and of colloidal alumina on silica. J. Am. Ceram. Soc. 1964, 47, 194–198. [Google Scholar] [CrossRef]
- Ismael, M.R.; Anjos, R.D.; Salomão, R.; Pandolfelli, V.C. Colloidal Silica as a Nanostructured Binder for Refractory Castables. Refract. Appl. News 2006, 11, 16–20. [Google Scholar]
- Zhao, H.; Ju, H. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Anal. Biochem. 2006, 350, 138–144. [Google Scholar] [CrossRef]
- Pravda, J. Hydrogen peroxide and disease: Towards a unified system of pathogenesis and therapeutics. Mol. Med. 2020, 26, 41. [Google Scholar] [CrossRef]
- Halliwella, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef]
- Yang, L.; Xu, C.; Ye, W.; Liu, W. An electrochemical sensor for H2O2 based on a new Co-metal-organic framework modified electrode. Sens. Actuators B Chem. 2015, 215, 489–496. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, Z.; Liu, Z.; Liu, G.; Li, Z.; Wang, J.; Dong, X. Silver microspheres for application as hydrogen peroxide sensor. Electrochem. Commun. 2009, 11, 1707–1710. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, T.; Zhu, X.; Zu, S.; Xie, Z.; Lu, X.; Zhang, M.; Song, L.; Jin, Y. Metal-Organic Frameworks for Electrocatalytic Sensing of Hydrogen Peroxide. Molecules 2022, 27, 4571. [Google Scholar] [CrossRef]
- Munusamy, P.; Sanghavi, S.; Varga, T.; Suntharampilla, T. Silica supported ceria nanoparticles: A hybrid nanostructure to increase stability and surface reactivity of nano-crystalline ceria. RSC Adv. 2014, 4, 8421. [Google Scholar] [CrossRef]
- Mohd Bakhori, N.; Yusof, N.A.; Abdullah, J.; Wasoh, H.; Ab Rahman, S.K.; Abd Rahman, S.F. Surface enhanced CdSe/ZnS QD/SiNP electrochemical immunosensor for the detection of Mycobacterium tuberculosis by combination of CFP10-ESAT6 for better diagnostic specificity. Materials 2020, 13, 149. [Google Scholar] [CrossRef] [PubMed]
- Laviron, E.; Roullier, L.; Degrand, C. A Multilayer Model for the Study of Space Distributed Redox Modified Electrodes: Part II. Theory and Application of Linear Potential Sweep Voltammetry for a Simple Reaction. J. Electroanal. Chem. Interfacial Electrochem. 1980, 112, 11–23. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Abdelaziz, M.A.; Mansour, F.R.; Danielson, N.D. A gadolinium-based magnetic ionic liquid for dispersive liquid–liquid microextraction. Anal. Bioanal. Chem. 2021, 413, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Amini, N.; Abdolahi, S.S.; Naderi, K.; Maleki, P.; Mohammadi, S.; Mandoumi, N. Construction of a sensitive electrochemical sensor for diphenhydramine and 8-chlorotophylline as a dimenhydrinate drug based on copper nanoparticles and polyalizarin yellow at two applied potentials. J. Appl. Electrochem. 2022, 52, 617–626. [Google Scholar] [CrossRef]
- Mohammad Ali Kamyabi, M.A.; Hajari, N. Low Potential and Non-Enzymatic Hydrogen Peroxide Sensor Based on Copper Oxide Nanoparticle on Activated Pencil Graphite Electrode. J. Braz. Chem. Soc. 2017, 28, 808–818. [Google Scholar] [CrossRef]
- Tang, J.; Huang, L.; Cheng, Y.; Zhuang, J.; Li, P.; Tang, D. Nonenzymatic sensing of hydrogen peroxide using a glassy carbon electrode modified with graphene oxide, a polyamidoamine dendrimer, and with polyaniline deposited by the Fenton reaction. Mikrochim. Acta 2018, 185, 569. [Google Scholar] [CrossRef]
- Benvidi, A.; Nafar, M.T.; Jahanbani, S.; Tezerjani, M.D.; Rezaeinasab, M.; Dalirnasab, S. Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide. Mater. Sci. Eng. C 2017, 75, 1435–1447. [Google Scholar] [CrossRef]
- Yang, L.; Yang, W.; Cai, Q. Size-Controllable Fabrication of Noble Metal Nanonets Using a TiO2 Template. Inorg. Chem. 2006, 45, 9616–9618. [Google Scholar] [CrossRef]
- Song, H.; Ma, C.; You, L.; Cheng, Z.; Zhang, X.; Yin, B.; Ni, Y.; Zhang, K. Electrochemical hydrogen peroxide sensor based on a glassy carbon electrode modified with nanosheets of copper-doped copper (II) oxide. Microchim. Acta 2015, 182, 1543–1549. [Google Scholar] [CrossRef]
- Ojani, R.; Raoof, J.B.; Norouzi, B. Carbon paste electrode modified by cobalt ions dispersed into poly (N-methylaniline) preparing in the presence of SDS: Application in electrocatalytic oxidation of hydrogen peroxide. J. Solid State Electrochem. 2010, 14, 621–631. [Google Scholar] [CrossRef]
- Islam, M.F.; Islam, M.T.; Hasan, M.M.; Rahman, M.M.; Nagao, Y.; Hasnat, M.A. Facile fabrication of GCE/Nafion/Ni composite, a robust platform to detect hydrogen peroxide in basic medium via oxidation reaction. Talanta 2022, 240, 123202. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Du, X. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose. Sens. Actuators B Chem. 2017, 239, 536–543. [Google Scholar] [CrossRef]
- Song, H.; Ni, Y.; Kokot, S. A novel electrochemical sensor based on the copper-doped copper oxide nanoparticles for the analysis of hydrogen peroxide. Coll. Surf. A Physicochem. Eng. Asp. 2015, 465, 153–158. [Google Scholar] [CrossRef]
Sensor | Rs | Rct (1 & 2) | CPE | Q (1,2 & 3) | Q2 | Zw |
---|---|---|---|---|---|---|
GCE | 820 | 4220 | 1.06 | |||
GCE/SiO-CeONPs | 48.7 | 1.43, 1.42 | 28.2, 2.32, 6.30 | |||
GCE/SiO-CeONPs-H2O2 | 33.7 | 0.22 | 3.95 | 2.64 | 1.11 | 900 |
Sensor | Linear Range (µM) | LOD (µM) | Potential (V) | Reference |
---|---|---|---|---|
Cu@CuO nanosheets | 3–8000 | 210 | −0.46 | [31] |
CuO/APGE | 5.0–1600 | 0.21 | 0.05 | [27] |
PNMA(SDS)/Co/CPE | 5–48 | 3.00 | 0.25 | [32] |
GCE/Nafion/Ni | 5–500 | 1.80 | ------- | [33] |
GCE/MoS2/Au-Pd | 0.8–10,000 | 0.16 | −0.03 | [34] |
GCE/Go-PAMAM-Fe3+ | 0.5–2000 | 0.18 | 0.05 | [28] |
GCE/Cu@CuO | 5–8000 | 0.23 | −0.50 | [35] |
GCE/SiO-CeONPs | 0.01–0.08 | 0.0004 | 0.13 | This study |
Sample | Measured (µM) | Added H2O2 (µM) | Found (µM) | Recoveries (%) | %RSD |
---|---|---|---|---|---|
Apple Juice | 0.17 | 0.007 | 0.164 | 96.47 | 4.30 |
0.013 | 0.157 | 92.35 | 5.00 | ||
0.020 | 0.150 | 88.23 | 4.00 | ||
Milk | 1.62 | 0.007 | 1.610 | 99.38 | 0.32 |
0.013 | 1.607 | 99.20 | 0.31 | ||
0.020 | 1.600 | 98.77 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silwana, B.; Matoetoe, M. Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples. Electrochem 2023, 4, 56-67. https://doi.org/10.3390/electrochem4010006
Silwana B, Matoetoe M. Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples. Electrochem. 2023; 4(1):56-67. https://doi.org/10.3390/electrochem4010006
Chicago/Turabian StyleSilwana, Bongiwe, and Mangaka Matoetoe. 2023. "Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples" Electrochem 4, no. 1: 56-67. https://doi.org/10.3390/electrochem4010006
APA StyleSilwana, B., & Matoetoe, M. (2023). Heterostructure of Metal Oxides Integrated on a GCE for Estimation of H2O2 Capacity in Milk and Fruit Juice Samples. Electrochem, 4(1), 56-67. https://doi.org/10.3390/electrochem4010006