Dual-Band Image Fusion Approach Using Regional Weight Analysis Combined with a Multi-Level Smoothing Filter
Abstract
:1. Introduction
2. Basic Theory
2.1. Bilateral Filter for Multi-Level Smoothing
2.2. Regional Weight Analysis
3. Image Fusion Approach
3.1. Multi-Level Smoothing
3.2. Image Fusion Based on Image Layers
3.3. Image Layer Resynthesis
3.4. Implementation
Algorithm 1 Image fusion approach algorithm |
Require: , , , , , , . |
1: Get initial infrared image data and visible image data . 2: Init: Initial , , , . 3: Get the base image layers and of and by Equation (9). 4: While do:
5: End while 6: The final fusion result is obtained by fusing and by Equation (13). |
4. Experimental Results and Discussion
4.1. Experimental Setting
4.2. Objective Evaluation Methods
4.3. Performance Comparison
4.4. Computational Efficiency Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dogra, A.; Goyal, B.; Agrawal, S. From multi-scale decomposition to non-multi-scale decompositionok methods: A comprehensive survey of image fusion techniques and its applications. IEEE Access 2017, 5, 16040–16067. [Google Scholar] [CrossRef]
- Zhang, X.; Ma, Y.; Fan, F.; Zhang, Y.; Huang, J. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition. JOSA A 2017, 34, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Zhao, L.; Chen, S.; Li, X. Fusion of Low-Quality Visible and Infrared Images Based on Multi-Level Latent Low-Rank Representation Joint with Retinex Enhancement and Multi-Visual Weight Information. IEEE Access 2021, 10, 2140–2153. [Google Scholar] [CrossRef]
- Nencini, F.; Garzelli, A.; Baronti, S.; Alparone, L. Remote sensing image fusion using the curvelet transform. Inf. Fusion 2007, 8, 143–156. [Google Scholar] [CrossRef]
- Pajares, G.; de la Cruz, J.M. A wavelet-based image fusion tutorial. Pattern Recognit. 2004, 37, 1855–1872. [Google Scholar] [CrossRef]
- Burt, P.J.; Adelson, E.H. The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 1983, 31, 532–540. [Google Scholar] [CrossRef]
- Toet, A.; van Ruyven, L.J.; Valeton, J.M. Merging thermal and visual images by a contrast pyramid. Opt. Eng. 1989, 28, 789–792. [Google Scholar] [CrossRef]
- Matsopoulos, G.; Marshall, S. Application of morphological pyramids: Fusion of MR and CT phantoms. J. Vis. Commun. Image Represent. 1995, 6, 196–207. [Google Scholar] [CrossRef]
- Ma, J.; Zhou, Z.; Wang, B.; Zong, H. Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Phys. Technol. 2017, 82, 8–17. [Google Scholar] [CrossRef]
- Naidu, V. Image fusion technique using multi-resolution singular value decomposition. Def. Sci. J. 2011, 61, 479. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, S.; Zhang, C.; Liu, J.; Zhang, J. Bayesian fusion for infrared and visible images. Signal Process. 2020, 177, 107734. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, F.; Xue, B. Fusion of infrared and visual images through region extraction by using multi scale center-surround top-hat transform. Opt. Express 2011, 19, 8444–8457. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, Z. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015, 24, 147–164. [Google Scholar] [CrossRef]
- Kong, S.G.; Heo, J.; Boughorbel, F.; Zheng, Y.; Abidi, B.R.; Koschan, A.; Yi, M.; Abidi, M.A. Multiscale Fusion of Visible and Thermal IR Images for Illumination-Invariant Face Recognition. Int. J. Comput. Vis. 2007, 71, 215–233. [Google Scholar] [CrossRef]
- Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019, 48, 11–26. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.-J.; Durrani, T.S. Infrared and visible image fusion with ResNet and zero-phase component analysis. Infrared Phys. Technol. 2019, 102, 103039. [Google Scholar] [CrossRef]
- Xu, H.; Ma, J.; Jiang, J.; Guo, X.; Ling, H. U2Fusion: A unified unsupervised image fusion network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 502–518. [Google Scholar] [CrossRef]
- Hong, R.; Wang, C.; Wang, M.; Sun, F. Salience preserving multifocus image fusion with dynamic range compression. Int. J. Innov. Comput. Inf. Control. 2009, 5, 2369–2380. [Google Scholar]
- Zhao, J.; Chen, Y.; Feng, H.; Xu, Z.; Li, Q. Infrared image enhancement through saliency feature analysis based on multi-scale decomposition. Infrared Phys. Technol. 2014, 62, 86–93. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Feng, H.; Xu, Z.; Li, Q. Fast image enhancement using multi-scale saliency extraction in infrared imagery. Opt.-Int. J. Light Electron Opt. 2014, 125, 4039–4042. [Google Scholar] [CrossRef]
- Zhao, J.; Zhou, Q.; Chen, Y.; Feng, H.; Xu, Z.; Li, Q. Fusion of visible and infrared images using saliency analysis and detail preserving based image decomposition. Infrared Phys. Technol. 2013, 56, 93–99. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, H.; Xu, Z.; Li, Q.; Liu, T. Detail enhanced multi-source fusion using visual weight map extraction based on multi scale edge preserving decomposition. Opt. Commun. 2013, 287, 45–52. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, J.; Mao, H.; Cui, G. Infrared and visible-image fusion using multiscale visual saliency extraction based on spatial weight matrix. J. Electron. Imaging 2021, 30, 23029. [Google Scholar] [CrossRef]
- Xie, J.; Heng, P.; Shah, M. Image diffusion using saliency bilateral filter. IEEE Trans. Inf. Technol. Biomed. 2008, 12, 768–771. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Zhang, D.; Wu, W.; Ma, J.; Zhou, H. A generative adversarial network for infrared and visible image fusion based on semantic segmentation. Entropy 2021, 23, 376. [Google Scholar] [CrossRef] [PubMed]
- Toet, A. The TNO multiband image data collection. Data Brief. 2017, 15, 249. [Google Scholar] [CrossRef]
- Roberts, J.W.; Van Aardt, J.; Ahmed, F. Assessment of image fusion procedures using entropy, image quality, and multispectral classification. J. Appl. Remote Sens. 2008, 2, 23522. [Google Scholar]
- Qu, G.; Zhang, D.; Yan, P. Information measure for performance of image fusion. Electron. Lett. 2002, 38, 313–315. [Google Scholar] [CrossRef]
Methods | En | JE | SF |
---|---|---|---|
WLS | 6.23 | 6.53 | 13.77 |
BF | 5.54 | 6.30 | 9.54 |
SVD | 5.88 | 6.41 | 10.49 |
FG | 6.00 | 6.45 | 7.76 |
MST | 6.92 | 6.75 | 14.92 |
CSTH | 6.60 | 6.65 | 15.30 |
MBSE | 6.25 | 6.53 | 13.84 |
Ours | 7.08 | 6.81 | 21.54 |
Methods | En | JE | SF |
---|---|---|---|
WLS | 6.71 | 7.19 | 15.60 |
BF | 6.45 | 7.10 | 13.83 |
SVD | 6.20 | 7.02 | 12.01 |
FG | 6.32 | 7.06 | 12.22 |
MST | 7.12 | 7.32 | 18.54 |
CSTH | 7.35 | 7.50 | 26.04 |
MBSE | 6.83 | 7.23 | 20.87 |
Ours | 7.41 | 7.36 | 30.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, J.; Jiang, H.; Wang, X.; Tan, Y. Dual-Band Image Fusion Approach Using Regional Weight Analysis Combined with a Multi-Level Smoothing Filter. Optics 2024, 5, 76-87. https://doi.org/10.3390/opt5010006
Yi J, Jiang H, Wang X, Tan Y. Dual-Band Image Fusion Approach Using Regional Weight Analysis Combined with a Multi-Level Smoothing Filter. Optics. 2024; 5(1):76-87. https://doi.org/10.3390/opt5010006
Chicago/Turabian StyleYi, Jia, Huilin Jiang, Xiaoyong Wang, and Yong Tan. 2024. "Dual-Band Image Fusion Approach Using Regional Weight Analysis Combined with a Multi-Level Smoothing Filter" Optics 5, no. 1: 76-87. https://doi.org/10.3390/opt5010006
APA StyleYi, J., Jiang, H., Wang, X., & Tan, Y. (2024). Dual-Band Image Fusion Approach Using Regional Weight Analysis Combined with a Multi-Level Smoothing Filter. Optics, 5(1), 76-87. https://doi.org/10.3390/opt5010006