Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Few-Level Systems for Simulations of Absorption Line Shape Changes
2.2. Convolutional Neutral Network for State Population Reconstruction
2.2.1. Convolutional Neural Network Architecture
2.2.2. Training Dataset Properties
2.2.3. Training Process
3. Results
3.1. Line Shape Changes and Population Reconstruction for the Two-Level System
3.2. Line Shape Changes and Population Reconstruction for the Four-Level System
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hentschel, M.; Kienberger, R.; Spielmann, C.; Reider, G.A.; Milosevic, N.; Brabec, T.; Corkum, P.; Heinzmann, U.; Drescher, M.; Krausz, F. Attosecond Metrology. Nature 2001, 414, 509–513. [Google Scholar] [CrossRef]
- Lewenstein, M.; Balcou, P.; Ivanov, M.Y.; L’Huillier, A.; Corkum, P.B. Theory of High-Harmonic Generation by Low-Frequency Laser Fields. Phys. Rev. A 1994, 49, 2117. [Google Scholar] [CrossRef]
- Paul, P.M.; Toma, E.S.; Breger, P.; Mullot, G.; Augé, F.; Balcou, P.; Muller, H.G.; Agostini, P. Observation of a Train of Attosecond Pulses from High Harmonic Generation. Science 2001, 292, 1689–1692. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, W.; Asova, G.; Ayvazyan, V.; Azima, A.; Baboi, N.; Bähr, J.; Balandin, V.; Beutner, B.; Brandt, A.; Bolzmann, A.; et al. Operation of a Free-Electron Laser from the Extreme Ultraviolet to the Water Window. Nat. Photonics 2007, 1, 336–342. [Google Scholar] [CrossRef]
- Duris, J.; Li, S.; Driver, T.; Champenois, E.G.; MacArthur, J.P.; Lutman, A.A.; Zhang, Z.; Rosenberger, P.; Aldrich, J.W.; Coffee, R.; et al. Tunable Isolated Attosecond X-Ray Pulses with Gigawatt Peak Power from a Free-Electron Laser. Nat. Photonics 2019, 14, 30–36. [Google Scholar] [CrossRef]
- Maroju, P.K.; Grazioli, C.; Di Fraia, M.; Moioli, M.; Ertel, D.; Ahmadi, H.; Plekan, O.; Finetti, P.; Allaria, E.; Giannessi, L.; et al. Attosecond Pulse Shaping Using a Seeded Free-Electron Laser. Nature 2020, 578, 386–391. [Google Scholar] [CrossRef]
- Tzallas, P.; Skantzakis, E.; Nikolopoulos, L.A.A.; Tsakiris, G.D.; Charalambidis, D. Extreme-Ultraviolet Pump–Probe Studies of One-Femtosecond-Scale Electron Dynamics. Nat. Phys. 2011, 7, 781–784. [Google Scholar] [CrossRef]
- Nandi, S.; Olofsson, E.; Bertolino, M.; Carlström, S.; Zapata, F.; Busto, D.; Callegari, C.; Di Fraia, M.; Eng-Johnsson, P.; Feifel, R.; et al. Observation of Rabi Dynamics with a Short-Wavelength Free-Electron Laser. Nature 2022, 608, 488–493. [Google Scholar] [CrossRef]
- Ott, C.; Aufleger, L.; Ding, T.; Rebholz, M.; Magunia, A.; Hartmann, M.; Stooß, V.; Wachs, D.; Birk, P.; Borisova, G.D.; et al. Strong-Field Extreme-Ultraviolet Dressing of Atomic Double Excitation. Phys. Rev. Lett. 2019, 123, 163–201. [Google Scholar] [CrossRef]
- Aufleger, L.; Friebel, P.; Rupprecht, P.; Magunia, A.; Ding, T.; Rebholz, M.; Hartmann, M.; Ott, C.; Pfeifer, T. Line-Shape Broadening of an Autoionizing State in Helium at High XUV Intensity. New J. Phys. 2022, 24, 013014. [Google Scholar] [CrossRef]
- Magunia, A.; Aufleger, L.; Ding, T.; Rupprecht, P.; Rebholz, M.; Ott, C.; Pfeifer, T. Bound-State Electron Dynamics Driven by Near-Resonantly Detuned Intense and Ultrashort Pulsed XUV Fields. Appl. Sci. 2020, 10, 6153. [Google Scholar] [CrossRef]
- He, Y.; Shi, H.; Xue, N.; Magunia, A.; Sun, S.; Ding, J.; Hu, B.; Liu, Z. Direct Manipulation of Atomic Excitation with Intense Extreme-Ultraviolet Laser Fields. Phys. Rev. A 2022, 105, 043113. [Google Scholar] [CrossRef]
- Stooß, V.; Cavaletto, S.M.; Donsa, S.; Blättermann, A.; Birk, P.; Keitel, C.H.; Březinová, I.; Burgdörfer, J.; Ott, C.; Pfeifer, T. Real-Time Reconstruction of the Strong-Field-Driven Dipole Response. Phys. Rev. Lett. 2018, 121, 173005. [Google Scholar] [CrossRef]
- Rohringer, N.; Ryan, D.; London, R.A.; Purvis, M.; Albert, F.; Dunn, J.; Bozek, J.D.; Bostedt, C.; Graf, A.; Hill, R.; et al. Atomic Inner-Shell X-Ray Laser at 1.46 Nanometres Pumped by an X-Ray Free-Electron Laser. Nature 2012, 481, 488–491. [Google Scholar] [CrossRef]
- Calegari, F.; Ayuso, D.; Trabattoni, A.; Belshaw, L.; De Camillis, S.; Anumula, S.; Frassetto, F.; Poletto, L.; Palacios, A.; Decleva, P.; et al. Ultrafast Electron Dynamics in Phenylalanine Initiated by Attosecond Pulses. Science 2014, 346, 336–339. [Google Scholar] [CrossRef]
- Mayer, D.; Lever, F.; Picconi, D.; Metje, J.; Alisauskas, S.; Calegari, F.; Düsterer, S.; Ehlert, C.; Feifel, R.; Niebuhr, M.; et al. Following Excited-State Chemical Shifts in Molecular Ultrafast x-Ray Photoelectron Spectroscopy. Nat. Commun. 2022, 13, 198. [Google Scholar] [CrossRef]
- Al-Haddad, A.; Oberli, S.; González-Vázquez, J.; Bucher, M.; Doumy, G.; Ho, P.; Krzywinski, J.; Lane, T.J.; Lutman, A.; Marinelli, A.; et al. Observation of Site-Selective Chemical Bond Changes via Ultrafast Chemical Shifts. Nat. Commun. 2022, 13, 7170. [Google Scholar] [CrossRef]
- Cheng, B.; Titterington, D.M. Neural Networks: A Review from a Statistical Perspective. Stat. Sci. 1994, 9, 2–30. [Google Scholar] [CrossRef]
- Salmela, L.; Tsipinakis, N.; Foi, A.; Billet, C.; Dudley, J.M.; Genty, G. Predicting Ultrafast Nonlinear Dynamics in Fibre Optics with a Recurrent Neural Network. Nat. Mach. Intell. 2021, 3, 344–354. [Google Scholar] [CrossRef]
- Sanchez-Gonzalez, A.; Micaelli, P.; Olivier, C.; Barillot, T.R.; Ilchen, M.; Lutman, A.A.; Marinelli, A.; Maxwell, T.; Achner, A.; Agåker, M.; et al. Accurate Prediction of X-Ray Pulse Properties from a Free-Electron Laser Using Machine Learning. Nat. Commun. 2017, 8, 15461. [Google Scholar] [CrossRef] [PubMed]
- Kleinert, S.; Morgner, U.; Tajalli, A.; Nagy, T. Rapid Phase Retrieval of Ultrashort Pulses from Dispersion Scan Traces Using Deep Neural Networks. Opt. Lett. 2019, 44, 979–982. [Google Scholar] [CrossRef]
- DeLong, K.W.; Ladera, C.L.; Fittinghoff, D.N.; Krumbügel, M.A.; Trebino, R.; Sweetser, J.N. Direct Ultrashort-Pulse Intensity and Phase Retrieval by Frequency-Resolved Optical Gating and a Computational Neural Network. Opt. Lett. 1996, 21, 143–145. [Google Scholar] [CrossRef]
- Zahavy, T.; Dikopoltsev, A.; Cohen, O.; Mannor, S.; Segev, M. Deep Learning Reconstruction of Ultrashort Pulses. Optica 2018, 5, 666–673. [Google Scholar] [CrossRef]
- Breckwoldt, N.; Son, S.-K.; Mazza, T.; Rörig, A.; Boll, R.; Meyer, M.; LaForge, A.C.; Mishra, D.; Berrah, N.; Santra, R. Machine-Learning Calibration of Intense x-Ray Free-Electron-Laser Pulses Using Bayesian Optimization. Phys. Rev. Res. 2023, 5, 023114. [Google Scholar] [CrossRef]
- Gherman, A.M.M.; Kovács, K.; Cristea, M.V.; Toşa, V. Artificial Neural Network Trained to Predict High-Harmonic Flux. Appl. Sci. 2018, 8, 2106. [Google Scholar] [CrossRef]
- Gutberlet, T.; Chang, H.-T.; Zayko, S.; Sivis, M.; Ropers, C. High-Sensitivity Extreme-Ultraviolet Transient Absorption Spectroscopy Enabled by Machine Learning. Opt. Express 2023, 31, 39757–39764. [Google Scholar] [CrossRef]
- Shvetsov-Shilovski, N.I.; Lein, M. Deep Learning for Retrieval of the Internuclear Distance in a Molecule from Interference Patterns in Photoelectron Momentum Distributions. Phys. Rev. A 2022, 105, L021102. [Google Scholar] [CrossRef]
- Liu, X.; Amini, K.; Sanchez, A.; Belsa, B.; Steinle, T.; Biegert, J. Machine Learning for Laser-Induced Electron Diffraction Imaging of Molecular Structures. Commun. Chem. 2021, 4, 154. [Google Scholar] [CrossRef]
- Rupp, M.; Tkatchenko, A.; Müller, K.R.; Von Lilienfeld, O.A. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning. Phys. Rev. Lett. 2012, 108, 058301. [Google Scholar] [CrossRef]
- Shvetsov-Shilovski, N.I.; Lein, M. Transfer Learning, Alternative Approaches, and Visualization of a Convolutional Neural Network for Retrieval of the Internuclear Distance in a Molecule from Photoelectron Momentum Distributions. Phys. Rev. A 2023, 107, 033106. [Google Scholar] [CrossRef]
- Brockherde, F.; Vogt, L.; Li, L.; Tuckerman, M.E.; Burke, K.; Müller, K.-R. By-Passing the Kohn-Sham Equations with Machine Learning. Nat. Commun. 2016, 8, 872. [Google Scholar] [CrossRef]
- Snyder, J.C.; Rupp, M.; Hansen, K.; Müller, K.R.; Burke, K. Finding Density Functionals with Machine Learning. Phys. Rev. Lett. 2012, 108, 253002. [Google Scholar] [CrossRef]
- Mills, K.; Spanner, M.; Tamblyn, I. Deep Learning and the Schrödinger Equation. Phys. Rev. A 2017, 96, 042113. [Google Scholar] [CrossRef]
- Ott, C.; Kaldun, A.; Raith, P.; Meyer, K.; Laux, M.; Evers, J.; Keitel, C.-H.; Greene, C.-H.; Pfeifer, T. Lorentz Meets Fano in Spectral Line Shapes: A Universal Phase and Its Laser Control. Science 2013, 340, 716–720. [Google Scholar] [CrossRef]
- Rupprecht, P.; Aufleger, L.; Heinze, S.; Magunia, A.; Ding, T.; Rebholz, M.; Amberg, S.; Mollov, N.; Henrich, F.; Haverkort, M.W.; et al. Resolving Vibrations in a Polyatomic Molecule with Femtometer Precision via X-Ray Spectroscopy. Phys. Rev. A 2023, 108, 032816. [Google Scholar] [CrossRef]
- Kingma, D.P.; Lei Ba, J. Adam: A method for stochastic optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Fano, U. Effects of Configuration Interaction on Intensities and Phase Shifts. Phys. Rev. 1961, 124, 1866–1878. [Google Scholar] [CrossRef]
- Rabi, I.I. Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 1937, 51, 652–654. [Google Scholar] [CrossRef]
- Allaria, E.; Appio, R.; Badano, L.; Barletta, W.A.; Bassanese, S.; Biedron, S.G.; Borga, A.; Busetto, E.; Castronovo, D.; Cinquegrana, P.; et al. Highly Coherent and Stable Pulses from the FERMI Seeded Free-Electron Laser in the Extreme Ultraviolet. Nat. Photonics 2012, 6, 699–704. [Google Scholar] [CrossRef]
- Weninger, C.; Purvis, M.; Ryan, D.; London, R.A.; Bozek, J.D.; Bostedt, C.; Graf, A.; Brown, G.; Rocca, J.J.; Rohringer, N. Stimulated Electronic X-Ray Raman Scattering. Phys. Rev. Lett. 2013, 111, 233902. [Google Scholar] [CrossRef]
- Li, K.; Labeye, M.; Ho, P.J.; Gaarde, M.B.; Young, L. Resonant Propagation of x Rays from the Linear to the Nonlinear Regime. Phys. Rev. A 2020, 102, 053113. [Google Scholar] [CrossRef]
- Heeg, K.P.; Kaldun, A.; Strohm, C.; Reiser, P.; Ott, C.; Subramanian, R.; Lentrodt, D.; Haber, J.; Wille, H.C.; Goerttler, S.; et al. Spectral Narrowing of X-Ray Pulses for Precision Spectroscopy with Nuclear Resonances. Science 2017, 357, 375–378. [Google Scholar] [CrossRef]
- Gao, J.; Guo, C.; Guo, X.; Jin, G.; Wang, P.; Zhao, J.; Zhang, H.; Jiang, Y.; Wang, D.; Jiang, D. Observation of Light Amplification without Population Inversion in Sodium. Opt. Commun. 1992, 93, 323–327. [Google Scholar] [CrossRef]
- Grynberg, G.; Pinard, M.; Mandel, P. Amplification without Population Inversion in a V Three-Level System: A Physical Interpretation. Phys. Rev. A 1996, 54, 776. [Google Scholar] [CrossRef]
- Van Der Veer, W.E.; Van Diest, R.J.J.; Dönszelmann, A.; Van Linden Van Den Heuvell, H.B. Experimental Demonstration of Light Amplification without Population Inversion. Phys. Rev. Lett. 1993, 70, 3243. [Google Scholar] [CrossRef]
- Zibrov, A.S.; Lukin, M.D.; Nikonov, D.E.; Hollberg, L.; Scully, M.O.; Velichansky, V.L.; Robinson, H.G. Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb. Phys. Rev. Lett. 1995, 75, 1499. [Google Scholar] [CrossRef]
- Wen, P.Y.; Kockum, A.F.; Ian, H.; Chen, J.C.; Nori, F.; Hoi, I.C. Reflective Amplification without Population Inversion from a Strongly Driven Superconducting Qubit. Phys. Rev. Lett. 2018, 120, 063603. [Google Scholar] [CrossRef]
- Kocharovskaia, O.A.; Khanin, I.I. Coherent Amplification of an Ultrashort Pulse in a Three-Level Medium without Population Inversion. Pisma V Zhurnal Eksperimentalnoi I Teor. Fiz. 1988, 48, 581–584. [Google Scholar]
- Kocharovskaya, O. Amplification and Lasing without Inversion. Phys. Rep. 1992, 219, 175–190. [Google Scholar] [CrossRef]
- Kocharovskaya, O.; Mandel, P. Amplification without Inversion: The Double-Λ Scheme. Phys. Rev. A 1990, 42, 523. [Google Scholar] [CrossRef]
- Lyras, A.; Tang, X.; Lambropoulos, P.; Zhang, J. Radiation Amplification through Autoionizing Resonances without Population Inversion. Phys. Rev. A 1989, 40, 4131. [Google Scholar] [CrossRef] [PubMed]
- Arkhipkin, V.G.; Heller, Y.I. Radiation Amplification without Population Inversion at Transitions to Autoionizing States. Phys. Lett. A 1983, 98, 12–14. [Google Scholar] [CrossRef]
- Sansone, G.; Kelkensberg, F.; Pérez-Torres, J.F.; Morales, F.; Kling, M.F.; Siu, W.; Ghafur, O.; Johnsson, P.; Swoboda, M.; Benedetti, E.; et al. Electron Localization Following Attosecond Molecular Photoionization. Nature 2010, 465, 763–766. [Google Scholar] [CrossRef] [PubMed]
Error | No Noise | 1% Noise | 3% Noise |
---|---|---|---|
MSE | 5.7 × 10−7 | 3.4 × 10−3 | 5.5 × 10−3 |
MAE | 4.1 × 10−4 | 1.5 × 10−2 | 3.3 × 10−2 |
Error | No Noise | 1% Noise | 3% Noise |
---|---|---|---|
MSE | 3.6 × 10−8 | 1.7 × 10−4 | 1.3 × 10−3 |
MAE | 1.2 × 10−4 | 4.4 × 10−3 | 1.4 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Richter, D.; Magunia, A.; Rebholz, M.; Ott, C.; Pfeifer, T. Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network. Optics 2024, 5, 88-100. https://doi.org/10.3390/opt5010007
Richter D, Magunia A, Rebholz M, Ott C, Pfeifer T. Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network. Optics. 2024; 5(1):88-100. https://doi.org/10.3390/opt5010007
Chicago/Turabian StyleRichter, Daniel, Alexander Magunia, Marc Rebholz, Christian Ott, and Thomas Pfeifer. 2024. "Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network" Optics 5, no. 1: 88-100. https://doi.org/10.3390/opt5010007
APA StyleRichter, D., Magunia, A., Rebholz, M., Ott, C., & Pfeifer, T. (2024). Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network. Optics, 5(1), 88-100. https://doi.org/10.3390/opt5010007