Relative Humidity Measurement Based on a Tapered, PVA-Coated Fiber Optics Multimode Interference Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multimode Interference (MMI) Principle and Device Fabrication
2.2. PVA Coating
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kersey, A.D. A review of recent developments in fiber optic sensor technology. Opt. Fiber Technol. 1996, 2, 291–317. [Google Scholar] [CrossRef]
- Yin, S.; Ruffin, P.B.; Francis, T. Fiber Optic Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lee, C.Y.; Lee, G.B. Humidity sensors: A review. Sens. Lett. 2005, 3, 1–15. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Hamidon, M.N. Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 2014, 14, 7881–7939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett. 2005, 3, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Rao, X.; Zhao, L.; Xu, L.; Wang, Y.; Liu, K.; Wang, Y.; Chen, G.Y.; Liu, T.; Wang, Y. Review of optical humidity sensors. Sensors 2021, 21, 8049. [Google Scholar] [CrossRef]
- Ascorbe, J.; Corres, J.M.; Arregui, F.J.; Matias, I.R. Recent developments in fiber optics humidity sensors. Sensors 2017, 17, 893. [Google Scholar] [CrossRef] [Green Version]
- Patil, Y.H.; Ghosh, A. Optical fiber humidity sensors: A review. In Proceedings of the 2020 4th International Conference on Trends in Electronics and Informatics (ICOEI)(48184), Tirunelveli, India, 15–17 June 2020; pp. 207–213. [Google Scholar]
- Yan, H.; Han, D.; Li, M.; Lin, B. Relative humidity sensor based on surface plasmon resonance of D-shaped fiber with polyvinyl alcohol embedding Au grating. J. Nanophotonics 2017, 11, 016008. [Google Scholar] [CrossRef]
- Zebian, H.Y.; Taher, H.J. Relative humidity sensor based on no-core multimode interferometer coated with Al2O3-PVA composite films. Opt. Fiber Technol. 2020, 54, 102110. [Google Scholar] [CrossRef]
- Kieu, K.Q.; Mansuripur, M. Biconical fiber taper sensors. IEEE Photonics Technol. Lett. 2006, 18, 2239–2241. [Google Scholar] [CrossRef]
- Liu, H.; Miao, Y.; Liu, B.; Lin, W.; Zhang, H.; Song, B.; Huang, M.; Lin, L. Relative humidity sensor based on S-taper fiber coated with SiO 2 nanoparticles. IEEE Sens. J. 2015, 15, 3424–3428. [Google Scholar] [CrossRef]
- André, R.M.; Biazoli, C.R.; Silva, S.O.; Marques, M.B.; Cordeiro, C.M.; Frazão, O. Strain-temperature discrimination using multimode interference in tapered fiber. IEEE Photonics Technol. Lett. 2012, 25, 155–158. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Wu, Q.; Kumar, R.; Ng, W.P.; Liu, H.; Niu, L.; Lalam, N.; Yuan, X.; Semenova, Y.; Farrell, G.; et al. High sensitivity refractometer based on reflective SMF-small diameter no core fiber structure. Sensors 2017, 17, 1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Sepúlveda, J.R.; Guzmán-Cabrera, R.; Castillo-Guzmán, A.A. Optical sensing using fiber-optic multimode interference devices: A review of nonconventional sensing schemes. Sensors 2021, 21, 1862. [Google Scholar] [CrossRef]
- Wu, Q.; Qu, Y.; Liu, J.; Yuan, J.; Wan, S.P.; Wu, T.; He, X.D.; Liu, B.; Liu, D.; Ma, Y.; et al. Singlemode-multimode-singlemode fiber structures for sensing applications—A review. IEEE Sens. J. 2020, 21, 12734–12751. [Google Scholar] [CrossRef]
- Wang, K.; Dong, X.; Köhler, M.H.; Kienle, P.; Bian, Q.; Jakobi, M.; Koch, A.W. Advances in optical fiber sensors based on multimode interference (MMI): A review. IEEE Sens. J. 2020, 21, 132–142. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, J.; Zhao, Q. Review of no-core optical fiber sensor and applications. Sens. Actuators A Phys. 2020, 313, 112160. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, H.; Wang, X.; Farrell, G.; Brambilla, G. A review of multimode interference in tapered optical fibers and related applications. Sensors 2018, 18, 858. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Sepulveda, J.R.; Castillo-Guzman, A.A. Wavelength Tuning of Multimode Interference Fiber Lasers: A Review. Adv. Photonics Res. 2021, 2, 2100051. [Google Scholar] [CrossRef]
- An, J.; Zhao, Y.; Jin, Y.; Shen, C. Relative humidity sensor based on SMS fiber structure with polyvinyl alcohol coating. Optik 2013, 124, 6178–6181. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242, 1065–1072. [Google Scholar] [CrossRef]
- Fuentes-Rubio, Y.A.; Domínguez-Cruz, R.F.; Guzmán-Sepúlveda, J.R. Multipoint fiber optics refractive index sensor based on multimode interference effects. Appl. Opt. 2021, 60, 9691–9695. [Google Scholar] [CrossRef] [PubMed]
- Schnepf, M.J.; Mayer, M.; Kuttner, C.; Tebbe, M.; Wolf, D.; Dulle, M.; Altantzis, T.; Formanek, P.; Förster, S.; Bals, S.; et al. Nanorattles with tailored electric field enhancement. Nanoscale 2017, 9, 9376–9385. [Google Scholar] [CrossRef] [Green Version]
- Miao, Y.; Liu, B.; Zhang, H.; Li, Y.; Zhou, H.; Sun, H.; Zhang, W.; Zhao, Q. Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating. IEEE Photonics Technol. Lett. 2009, 21, 441–443. [Google Scholar] [CrossRef]
- Miao, Y.; Ma, X.; He, Y.; Zhang, H.; Zhang, H.; Song, B.; Liu, B.; Yao, J. Low-temperature-sensitive relative humidity sensor based on tapered square no-core fiber coated with SiO2 nanoparticles. Opt. Fiber Technol. 2016, 29, 59–64. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, M.; Zhang, Y.; Xu, Y.; Zhang, Y.; Yang, X.; Zhang, J.; Yang, J.; Yuan, L. Spider silk-based tapered optical fiber for humidity sensing based on multimode interference. Sens. Actuators A Phys. 2020, 313, 112179. [Google Scholar] [CrossRef]
- An, J.; Jin, Y.; Sun, M.; Dong, X. Relative humidity sensor based on SMS fiber structure with two waist-enlarged tapers. IEEE Sens. J. 2014, 14, 2683–2686. [Google Scholar] [CrossRef]
- Syuhada, A.; Shamsudin, M.S.; Daud, S.; Krishnan, G.; Harun, S.W.; Aziz, M.S.A. Single-mode modified tapered fiber structure functionalized with GO-PVA composite layer for relative humidity sensing. Photonic Sens. 2021, 11, 314–324. [Google Scholar] [CrossRef]
- Xu, W.; Shi, J.; Yang, X.; Xu, D.; Rong, F.; Zhao, J.; Yao, J. Relative humidity sensor based on no-core fiber coated by agarose-gel film. Sensors 2017, 17, 2353. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Farrell, G.; Lewis, E.; Tian, K.; Yuan, L.; Wang, P. A humidity sensor based on a singlemode-side polished multimode–singlemode optical fibre structure coated with gelatin. J. Light. Technol. 2017, 35, 4087–4094. [Google Scholar] [CrossRef]
- Wang, X.; Tian, K.; Yuan, L.; Lewis, E.; Farrell, G.; Wang, P. A high-temperature humidity sensor based on a singlemode-side polished multimode-singlemode fiber structure. J. Light. Technol. 2018, 36, 2730–2736. [Google Scholar] [CrossRef]
- Ma, Q.F.; Tou, Z.Q.; Ni, K.; Lim, Y.Y.; Lin, Y.F.; Wang, Y.R.; Zhou, M.H.; Shi, F.F.; Niu, L.; Dong, X.Y.; et al. Carbon-nanotube/Polyvinyl alcohol coated thin core fiber sensor for humidity measurement. Sens. Actuators B Chem. 2018, 257, 800–806. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Cao, S.; Huang, Y.; Zhang, L.; Zhang, F.; Liao, C.; Wang, Y. Mechanism and characteristics of humidity sensing with polyvinyl alcohol-coated fiber surface plasmon resonance sensor. Sensors 2018, 18, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, R.j.; Zhao, Y.; Chen, M.q.; Peng, Y. Multimode interferometer based on no-core fiber with GQDs-PVA composite coating for relative humidity sensing. Opt. Fiber Technol. 2019, 48, 242–247. [Google Scholar] [CrossRef]
- Doudou, B.B.; Jaouadi, H.; Dridi, C. Prism coupling technique investigation of optical and thermo-optical properties of polyvinyl alcohol and polyvinyl alcohol/silica nanocomposite films. Opt. Commun. 2021, 492, 126984. [Google Scholar] [CrossRef]
- Doudou, B.B.; Chiba, I.; Daoues, H.S. Optical and thermo-optical properties of polyvinyl alcohol/carbon nanotubes composites investigated by prism coupling technique. Opt. Mater. 2022, 131, 112672. [Google Scholar] [CrossRef]
- Ko, B.; Badloe, T.; Yang, Y.; Park, J.; Kim, J.; Jeong, H.; Jung, C.; Rho, J. Tunable metasurfaces via the humidity responsive swelling of single-step imprinted polyvinyl alcohol nanostructures. Nat. Commun. 2022, 13, 6256. [Google Scholar] [CrossRef]
- Gastón, A.; Pérez, F.; Sevilla, J. Optical fiber relative-humidity sensor with polyvinyl alcohol film. Appl. Opt. 2004, 43, 4127–4132. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, T.; Liu, Y.; Li, Y.; Zhao, C.L.; Chan, C.C. Polyvinyl alcohol–coated hybrid fiber grating for relative humidity sensing. J. Biomed. Opt. 2011, 16, 077001. [Google Scholar] [CrossRef]
- Li, T.; Dong, X.; Chan, C.C.; Zhao, C.L.; Zu, P. Humidity sensor based on a multimode-fiber taper coated with polyvinyl alcohol interacting with a fiber Bragg grating. IEEE Sens. J. 2011, 12, 2205–2208. [Google Scholar] [CrossRef]
- Yang, J.; Dong, X.; Ni, K.; Chan, C.C.; Shun, P.P. Intensity-modulated relative humidity sensing with polyvinyl alcohol coating and optical fiber gratings. Appl. Opt. 2015, 54, 2620–2624. [Google Scholar] [CrossRef]
- Hsieh, M.C.; Liao, C.H.; Lin, J.Y. Optical relative humidity sensor based on a polyvinyl alcohol film and a phase-enhancement total-internal-reflection heterodyne interferometer. Sens. Actuators A Phys. 2020, 316, 112412. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: Cambridge, MA, USA, 1998; Volume 3. [Google Scholar]
- Chang, S.; Hsu, C.C.; Huang, T.H.; Chuang, W.C.; Tsai, Y.S.; Shieh, J.Y.; Leung, C.Y. Heterodyne interferometric measurement of the thermo-optic coefficient of single mode fiber. Chin. J. Phys. 2000, 38, 437–442. [Google Scholar]
- Gao, H.; Jiang, Y.; Cui, Y.; Zhang, L.; Jia, J.; Jiang, L. Investigation on the thermo-optic coefficient of silica fiber within a wide temperature range. J. Light. Technol. 2018, 36, 5881–5886. [Google Scholar] [CrossRef]
- Xu, W.; Shi, J.; Yang, X.; Xu, D.; Rong, F.; Zhao, J.; Yao, J. Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation. Sensors 2017, 17, 2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Structure | Material | Fiber Structure Novelty | Sensitivity | Sensing Range | Ref. |
---|---|---|---|---|---|---|
2013 | SMF-MMF-SMF | PVA | Etched MMF (no cladding) | 0.09 nm/%RH | 30–80% | [21] |
2014 | SMF-MMF-SMF | PVS | Bitapers | 0.139 nm/%RH | 35–85% | [28] |
2016 | SMF-TSNCF-SMF | SiO | TSNCF | 0.5842 nm/%RH | 83–96.6% | [26] |
2017 | SMF-NCF-SMF | AGF | NCF | 0.149 nm/%RH | 30–75% | [30] |
2017 | D-shaped fiber grating | Au-PVA | Surface plasmon D-fiber | 0.54 nm/%RH | 0–70% | [9] |
2017 | SMF-PCF-SMF | PAH-PAA | Photonic crystal fiber | 2.35 nm/%RH | 75–95% | [22] |
2017 | SMF-MMF(polished)-SMF | Gelatin | D-shape | 0.14 dB/%RH | 40–90% | [31] |
2018 | SMF-MMF(polished)-SMF | None | Fiber roughness | 0.069 dB/%RH | 30–90% | [32] |
2018 | SMF-Thin Core | PVA C | Rounded tip | 0.4573 dB/%RH | >70% | [33] |
2018 | D-shaped SMF | PVA | Surface plasmon D-fiber | 4.97 nm/%RH | 80–90% | [34] |
2019 | SMF-NCF-SMF | GQD | Offset splice | 0.421 dB/%RH | 38.8–88.65% | [35] |
2020 | SMF-NCF-SMF | AlO PVA | Etched NCF | 0.587 nm/%RH | 30–100% | [10] |
2020 | Laser-SMF(Tapered) | Spider silk | Wrapped spider silk | 0.789 nm/%RH | 70–89% | [27] |
2021 | SMF(Tapered) | GO-PVA | Tapered SMF | 0.529 %RH | 20–99.9% | [29] |
2023 | SMF-NCF-SMF | PVA | NCF | 5.6 nm/%RH | 87–93% | * |
2023 | SMF-NCF-SMF | PVA | Tapered NCF | 6.6 nm/%RH | 92.5–94% | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quiñones-Flores, A.A.; Guzman-Sepulveda, J.R.; Castillo-Guzman, A.A. Relative Humidity Measurement Based on a Tapered, PVA-Coated Fiber Optics Multimode Interference Sensor. Optics 2023, 4, 473-481. https://doi.org/10.3390/opt4030034
Quiñones-Flores AA, Guzman-Sepulveda JR, Castillo-Guzman AA. Relative Humidity Measurement Based on a Tapered, PVA-Coated Fiber Optics Multimode Interference Sensor. Optics. 2023; 4(3):473-481. https://doi.org/10.3390/opt4030034
Chicago/Turabian StyleQuiñones-Flores, Abraham A., Jose R. Guzman-Sepulveda, and Arturo A. Castillo-Guzman. 2023. "Relative Humidity Measurement Based on a Tapered, PVA-Coated Fiber Optics Multimode Interference Sensor" Optics 4, no. 3: 473-481. https://doi.org/10.3390/opt4030034
APA StyleQuiñones-Flores, A. A., Guzman-Sepulveda, J. R., & Castillo-Guzman, A. A. (2023). Relative Humidity Measurement Based on a Tapered, PVA-Coated Fiber Optics Multimode Interference Sensor. Optics, 4(3), 473-481. https://doi.org/10.3390/opt4030034