Nonperturbative Generation of Harmonics by Nanometer-Scale Localized Electronic States on the Surface of Bulk Materials and Nano-Films
Abstract
:1. Introduction
2. Arguments for Surface or Bulk Generation of Harmonics
2.1. Strong Harmonic Signal from the Surface Area
2.2. Co-Propagation of Harmonic Beam with the Fundamental Laser Beam
2.3. Polarization Dependence of the Harmonic Signal
3. Role of Localized States on the Surface
3.1. Phenomenological Comparation of Perturbative and Non-Perturbative HH Generation
3.2. Photon–Atom Balance in Crystals
3.3. HH Generation from Localized States
4. Experimental Results
4.1. Adaptation of Bond Model to Non-Perturbative HH Generation
4.2. Application of Bond Model for I–VII, II–VI, III–V and IV–IV Crystals
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vampa, G.; Ghamsari, B.G.; Mousavi, S.S.; Hammond, T.J.; Olivieri, A.; Lisicka-Skrek, E.; Naumov, A.Y.; Villeneuve, D.M.; Staudte, A.; Berini, P.; et al. Plasmon-enhanced high-harmonic generation from silicon. Nat. Phys. 2017, 13, 659–662. [Google Scholar] [CrossRef]
- Zograf, G.; Koshelev, K.; Zalogina, A.; Korolev, V.; Hollinger, R.; Choi, D.-Y.; Zuerch, M.; Spielmann, C.; Luther-Davies, B.; Kartashov, D.; et al. High-Harmonic Generation from Resonant Dielectric Metasurfaces Empowered by Bound States in the Continuum. ACS Photonics 2022, 9, 567–574. [Google Scholar] [CrossRef]
- Xu, L.; Kamali, K.Z.; Huang, L.; Rahmani, M.; Smirnov, A.; Camacho-Morales, R.; Ma, Y.; Zhang, G.; Woolley, M.; Neshev, D.; et al. Dynamic Nonlinear Image Tuning through Magnetic Dipole Quasi-BIC Ultrathin Resonators. Adv. Sci. 2019, 6, 1802119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Lee, H.; Jiao, J.; Chun, B.J.; Kim, S.; Kim, D.-H.; Kim, Y.-J. Surface third and fifth harmonic generation at crystalline Si for non-invasive inspection of Si wafer’s inter-layer defects. Opt. Express 2018, 26, 32812–32823. [Google Scholar] [CrossRef]
- Qin, R.; Chen, Z.-Y.; Chen, S. High harmonic studies of structural phase transitions in silicon. Comput. Mater. Sci. 2021, 197, 110621. [Google Scholar] [CrossRef]
- Reinhoffer, C.; Pilch, P.; Reinold, A.; Derendorf, P.; Kovalev, S.; Deinert, J.-C.; Ilyakov, I.; Ponomaryov, A.; Chen, M.; Xu, T.-Q.; et al. High-order nonlinear terahertz probing of the two-band superconductor MgB2: Third- and fifth-order harmonic generation. Phys. Rev. B 2022, 106, 214514. [Google Scholar] [CrossRef]
- Saeta, P.N.; Miller, N.A. Distinguishing surface and bulk contributions to third-harmonic generation in silicon. Appl. Phys. Lett. 2001, 79, 2704–2706. [Google Scholar] [CrossRef] [Green Version]
- Levy, U.; Silberberg, Y. Second and third harmonic waves excited by focused Gaussian beams. Opt. Express 2015, 23, 27795–27805. [Google Scholar] [CrossRef]
- Vampa, G.; Liu, H.; Heinz, T.F.; Reis, D.A. Disentangling interface and bulk contributions to high-harmonic emission from solids. Optica 2019, 6, 553–556. [Google Scholar] [CrossRef]
- Yi, G.; Jeon, S.; Kwon, Y.W.; Park, J.; Nguyen, D.A.; Sandeep, C.S.S.; Hwang, W.S.; Hong, S.W.; Kim, S.; Kim, Y.-J. Enhanced third harmonic generation in ultrathin free-standing β-Ga2O3 nanomembranes: Study on surface and bulk contribution. Nanoscale 2022, 14, 175–186. [Google Scholar] [CrossRef]
- Seres, J.; Seres, E.; Serrat, C.; Schumm, T. Non-perturbative generation of DUV/VUV harmonics from crystal surfaces at 108 MHz repetition rate. Opt. Express 2018, 26, 21900–21909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seres, J.; Seres, E.; Serrat, C.; Schumm, T. High harmonic generation in AlN due to out-of-surface electron orbitals. OSA Contin. 2021, 4, 47. [Google Scholar] [CrossRef]
- Sekiguchi, F.; Yumoto, G.; Hirori, H.; Kanemitsu, Y. Polarization anomaly in high harmonics in the crossover region between perturbative and extreme nonlinearity in GaAs. Phys. Rev. B 2022, 106, L241201. [Google Scholar] [CrossRef]
- Tsang, T.Y.F. Optical third-harmonic generation at interfaces. Phys. Rev. A 1995, 52, 4116–4125. [Google Scholar] [CrossRef] [PubMed]
- Tsang, T. Third- and fifth-harmonic generation at the interfaces of glass and liquids. Phys. Rev. A 1996, 54, 5454–5457. [Google Scholar] [CrossRef]
- Heinz, T.F. Nonlinear Surface Electromagnetic Phenomena; Ponath, H.E., Stegeman, G., Eds.; North–Holland: Amsterdam, The Netherlands, 1991; Volume 29, pp. 353–416. ISBN 9780444600523. [Google Scholar]
- Lüpke, G.; Bottomley, D.J.; Van Driel, H.M. Second- and third-harmonic generation from cubic centrosymmetric crystals with vicinal faces: Phenomenological theory and experiment. J. Opt. Soc. Am. B 1994, 11, 33–44. [Google Scholar] [CrossRef]
- Barad, Y.; Eisenberg, H.; Horowitz, M.; Silberberg, Y. Nonlinear scanning laser microscopy by third harmonic generation. Appl. Phys. Lett. 1997, 70, 922–924. [Google Scholar] [CrossRef] [Green Version]
- Yi, G.; Lee, H.; Jiannan, J.; Chun, B.J.; Han, S.; Kim, H.; Kim, Y.W.; Kim, D.; Kim, S.-W.; Kim, Y.-J. Nonlinear third harmonic generation at crystalline sapphires. Opt. Express 2017, 25, 26002–26010. [Google Scholar] [CrossRef]
- Kim, H.; Han, S.; Kim, Y.W.; Kim, S.; Kim, S.-W. Generation of Coherent Extreme-Ultraviolet Radiation from Bulk Sapphire Crystal. ACS Photonics 2017, 4, 1627–1632. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Si, L.-G.; Lü, X.-Y.; Yang, X.; Wu, Y. Carrier-envelope phase-dependent effect of high-order sideband generation in ultrafast driven optomechanical system. Opt. Lett. 2013, 38, 353–355. [Google Scholar] [CrossRef] [Green Version]
- Boyd, R.W. Nonlinear Optics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780080485966. [Google Scholar]
- Uchida, K.; Mattoni, G.; Yonezawa, S.; Nakamura, F.; Maeno, Y.; Tanaka, K. High-Order Harmonic Generation and Its Unconventional Scaling Law in the Mott-Insulating Ca2RuO4. Phys. Rev. Lett. 2022, 128, 127401. [Google Scholar] [CrossRef]
- Possmayer, T.; Tilmann, B.; Maia, L.J.Q.; Maier, S.A.; Menezes, L.D.S. Second to fifth harmonic generation in individual β-barium borate nanocrystals. Opt. Lett. 2022, 47, 1826–1829. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Lima, F.; Boutu, W.; Merdji, H.; Fajardo, M.; Williams, G.O. Demonstration of nonperturbative and perturbative third-harmonic generation in MgO by altering the electronic structure. Phys. Rev. A 2022, 105, 053103. [Google Scholar] [CrossRef]
- Imasaka, K.; Shinohara, Y.; Kaji, T.; Kaneshima, K.; Ishii, N.; Itatani, J.; Ishikawa, K.L.; Ashihara, S. High harmonic generation from GaSe in a deep-UV range well above the bandgap. Opt. Contin. 2022, 1, 1232. [Google Scholar] [CrossRef]
- Kaassamani, S.; Auguste, T.; Tancogne-Dejean, N.; Liu, X.; Boutu, W.; Merdji, H.; Gauthier, D. Polarization spectroscopy of high-order harmonic generation in gallium arsenide. Opt. Express 2022, 30, 40531. [Google Scholar] [CrossRef]
- Georgescu, A.B.; Ismail-Beigi, S. Surface Piezoelectricity of (0001) Sapphire. Phys. Rev. Appl. 2019, 11, 064065. [Google Scholar] [CrossRef] [Green Version]
- Rowland, B.; Fisher, M.; Devlin, J.P. Probing icy surfaces with the dangling-OH-mode absorption: Large ice clusters and microporous amorphous ice. J. Chem. Phys. 1991, 95, 1378. [Google Scholar] [CrossRef]
- McEllistrem, M.; Allgeier, M.; Boland, J.J. Dangling Bond Dynamics on the Silicon (100)-2×1 Surface: Dissociation, Diffusion, and Recombination. Science 1998, 279, 545–548. [Google Scholar] [CrossRef]
- Aarts, I.M.P.; Gielis, J.J.H.; van de Sanden, M.C.M.; Kessels, W.M.M. Probing hydrogenated amorphous silicon surface states by spectroscopic and real-time second-harmonic generation. Phys. Rev. B 2006, 73, 045327. [Google Scholar] [CrossRef] [Green Version]
- Vampa, G.; Brabec, T. Merge of high harmonic generation from gases and solids and its implications for attosecond science. J. Phys. B 2017, 50, 083001. [Google Scholar] [CrossRef]
- Chevreuil, P.-A.; Brunner, F.; Thumm, U.; Keller, U.; Gallmann, L. Breakdown of the single-collision condition for soft x-ray high harmonic generation in noble gases. Optica 2022, 9, 1448–1457. [Google Scholar] [CrossRef]
- Seres, E.; Seres, J.; Serrat, C.; Namba, S. Core-level attosecond transient absorption spectroscopy of laser-dressed solid films of Si and Zr. Phys. Rev. B 2016, 94, 165125. [Google Scholar] [CrossRef] [Green Version]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; ISBN 0-471-41526-X. [Google Scholar]
- Inglesfield, J.E. Surface electronic structure. Rep. Prog. Phys. 1982, 45, 223–284. [Google Scholar] [CrossRef]
- Powell, G.D.; Wang, J.-F.; Aspnes, D.E. Simplified bond-hyperpolarizability model of second harmonic generation. Phys. Rev. B 2002, 65, 205320. [Google Scholar] [CrossRef]
- Hardhienata, H.; Priyadi, I.; Alatas, H.; Birowosuto, M.D.; Coquet, P. Bond model of second-harmonic generation in wurtzite ZnO(0002) structures with twin boundaries. J. Opt. Soc. Am. B 2019, 36, 1127–1137. [Google Scholar] [CrossRef]
- Hardhienata, H.; Faci, S.; Alejo-Molina, A.; Priatama, M.R.; Alatas, H.; Birowosuto, M.D. Quo Vadis Nonlinear Optics? An Alternative and Simple Approach to Third Rank Tensors in Semiconductors. Symmetry 2022, 14, 127. [Google Scholar] [CrossRef]
- Lapiano-Smith, D.A.; Eklund, E.A.; Himpsel, F.J.; Terminello, L.J. Epitaxy of LiF on Ge(100). Appl. Phys. Lett. 1991, 59, 2174–2176. [Google Scholar] [CrossRef]
- Takeda, E.; Zukawa, T.; Tsujita, T.; Yoshino, K.; Morita, Y. Annealing process for recovery of carbonated (Mg,Ca)O protective layer for plasma discharge device. Jpn. J. Appl. Phys. 2018, 57, 096001. [Google Scholar] [CrossRef]
- Lee, J.W. Kinetic Energy Distribution of Auger Electrons of MgO, CaO, SrO and BaO Induced by Auger Neutralization of He+, Ne+, Ar+ and Xe+ Ions. New Phys. Sae Mulli. 2017, 67, 1168–1173. [Google Scholar] [CrossRef]
- Sun, H.; Castanedo, C.G.T.; Liu, K.; Li, K.-H.; Guo, W.; Lin, R.; Liu, X.; Li, J.; Li, X. Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl. Phys. Lett. 2017, 111, 162105. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-N.; Ching, W.Y. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B 1993, 48, 4335–4351. [Google Scholar] [CrossRef] [PubMed]
- Shao, G. Work Function and Electron Affinity of Semiconductors: Doping Effect and Complication due to Fermi Level Pinning. Energy Environ. Mater. 2021, 4, 273–276. [Google Scholar] [CrossRef]
- Chelikowsky, J.R.; Cohen, M.L. Electronic structure of silicon. Phys. Rev. B 1974, 10, 5095–5107. [Google Scholar] [CrossRef] [Green Version]
- Samarin, S.; Artamonov, O.M.; Suvorova, A.A.; Sergeant, A.D.; Williams, J.F. Measurements of insulator band parameters using combination of single-electron and two-electron spectroscopy. Solid State Commun. 2004, 129, 389–393. [Google Scholar] [CrossRef]
- Uda, T.; Shigekawa, H.; Sugawara, Y.; Mizuno, S.; Tochihara, H.; Yamashita, Y.; Yoshinobu, J.; Nakatsuji, K.; Kawai, H.; Komori, F. Ground state of the Si(001) surface revisited—Is seeing believing? Prog. Surf. Sci. 2004, 76, 147–162. [Google Scholar] [CrossRef]
- Tong, W.; Gong, C.; Liu, X.; Yuan, S.; Huang, Q.; Xia, J.; Wang, Y. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt. Express 2016, 24, 19661–19670. [Google Scholar] [CrossRef]
- Shcherbakov, M.R.; Neshev, D.N.; Hopkins, B.; Shorokhov, A.S.; Staude, I.; Melik-Gaykazyan, E.V.; Decker, M.; Ezhov, A.A.; Miroshnichenko, A.E.; Brener, I.; et al. Enhanced Third-Harmonic Generation in Silicon Nanoparticles Driven by Magnetic Response. Nano Lett. 2014, 14, 6488–6492. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-X.; Li, Y.-Q. Optomagnonic frequency combs. Photonics Res. 2022, 10, 2786–2793. [Google Scholar] [CrossRef]
r | Rank | βj (°) | αrj | ||
---|---|---|---|---|---|
LiF (001) | H3 | 4.6 1 | “r” | 0; 90; 45; 135 | 1; 1; 0.63; 0.63 |
MgO (001) | H3 | 3.6 | “r” | 0; 90; 45; 135 | 0.33; 0.33; 1; 1 |
AlN (0001) | H3 | 3 | “r+1” | 30; 90; 150 | 1; 1; 1 |
H5 | 3.5 | ||||
Si (001) | H3 | 4 | “r” | 0; 90, 45; 135 | 1; 0.92; 0.5; 0.5 |
H5 | 5 | 1; 0.96; 0; 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seres, J.; Seres, E.; Céspedes, E.; Martinez-de-Olcoz, L.; Zabala, M.; Schumm, T. Nonperturbative Generation of Harmonics by Nanometer-Scale Localized Electronic States on the Surface of Bulk Materials and Nano-Films. Optics 2023, 4, 246-257. https://doi.org/10.3390/opt4010017
Seres J, Seres E, Céspedes E, Martinez-de-Olcoz L, Zabala M, Schumm T. Nonperturbative Generation of Harmonics by Nanometer-Scale Localized Electronic States on the Surface of Bulk Materials and Nano-Films. Optics. 2023; 4(1):246-257. https://doi.org/10.3390/opt4010017
Chicago/Turabian StyleSeres, Jozsef, Enikoe Seres, Eva Céspedes, Leyre Martinez-de-Olcoz, Miguel Zabala, and Thorsten Schumm. 2023. "Nonperturbative Generation of Harmonics by Nanometer-Scale Localized Electronic States on the Surface of Bulk Materials and Nano-Films" Optics 4, no. 1: 246-257. https://doi.org/10.3390/opt4010017
APA StyleSeres, J., Seres, E., Céspedes, E., Martinez-de-Olcoz, L., Zabala, M., & Schumm, T. (2023). Nonperturbative Generation of Harmonics by Nanometer-Scale Localized Electronic States on the Surface of Bulk Materials and Nano-Films. Optics, 4(1), 246-257. https://doi.org/10.3390/opt4010017