Spectral Optical Properties of Gray Matter in Human Male Brain Tissue Measured at 400–1100 nm
Abstract
:1. Introduction
2. Methods and Samples
2.1. Methods
2.2. Tissues Sample
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mercadante, A.A.; Tadi, P. Neuroanatomy, Gray Matter; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Guy-Evans, O. Grey Matter in the Brain. 11 October 2021. Simply Psychology. Available online: www.simplypsychology.org/what-is-grey-matter-in-the-brain.html (accessed on 17 November 2022).
- Cerebrl Cortex. Available online: https://my.clevelandclinic.org/health/articles/23073-cerebral-cortex (accessed on 17 November 2022).
- Neuron. Available online: https://en.wikipedia.org/wiki/Neuron (accessed on 17 November 2022).
- McDonald, B.C.; Conroy, S.K.; Ahles, T.A.; West, J.D.; Saykin, A.J. Alterations in brain activation during working memory processing associated with breast cancer and treatment: A prospective functional magnetic resonance imaging study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012, 30, 2500–2508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, B.C.; Saykin, A.J. Alterations in brain structure related to breast cancer and its treatment: Chemotherapy and other considerations. Brain Imaging Behav. 2013, 7, 374–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimprich, B.; Reuter-Lorenz, P.; Nelson, J.; Clark, P.M.; Therrien, B.; Normolle, D.; Berman, M.G.; Hayes, D.F.; Noll, D.C.; Peltier, S.; et al. Prechemotherapy alterations in brain function in women with breast cancer. J. Clin. Exp. Neuropsychol. 2010, 32, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.; Park, M. Molecular crosstalk between cancer and neurodegenerative diseases. Cell. Mol. Life Sci. 2020, 77, 2659–2680. [Google Scholar] [CrossRef] [Green Version]
- Weerasinghe-Mudiyanselage, P.D.E.; Ang, M.J.; Kang, S.; Kim, J.; Moon, C. Structural Plasticity of the Hippocampus in Neurodegenerative Dis. Int. J. Mol. Sci. 2022, 23, 3349. [Google Scholar] [CrossRef]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Jellinger, J.K.A. Basic mechanisms of neurodegeneration: A critical update. Cell Mol. Med. 2010, 14, 457–487. [Google Scholar] [CrossRef] [Green Version]
- Luebke, J.I.; Weaver, C.M.; Rocher, A.B.; Rodriguez, A.; Crimins, J.L.; Dickstein, D.L.; Wearne, S.L.; Hof, P.R. Dendritic vulnerability in neurodegenerative disease: Insights from analyses of cortical pyramidal neurons in transgenic mouse models. Brain Struct. Funct. 2010, 214, 81–199. [Google Scholar] [CrossRef] [Green Version]
- Ali, J.H.; Wang, W.B.; Zevallos, M.; Alfano, R.R. Near-infrared spectroscopy and imaging to probe differences in water content in normal and cancer human prostate tissues. Technol. Cancer Res. Treat. 2004, 3, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Nagarajan, N.; Pastuzyn, E.; Jenks, K.; Capecchi, M.; Shepherd, J.; Menon, R. Deep brain imaging via epi-fluorescence computational cannula microscopy. Sci. Rep. 2017, 7, 44791. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, C.; Sun, Y.; Pu, Y.; White, S.; Alfano, R.R. Human brain cancer studied by resonance Raman spectroscopy. J. Biomed. Opt. 2012, 17, 116021. [Google Scholar] [CrossRef] [PubMed]
- Wirdatmadja, S.; Johari, P.; Desai, A.; Bae, Y.; Stachowiak, E.K.; Stachowiak, M.K.; Jornet, J.M.; Balasubramaniam, S. Analysis of Light Propagation on Physiological Properties of Neurons for Nanoscale Optogenetics. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 2. [Google Scholar] [CrossRef] [PubMed]
- Favre-Bulle, I.; Preece, D.; Nieminen, T.; Heap, L.A.; Scott, E.K.; Rubinsztein-Dunlop, H. Scattering of Sculpted Light in Intact Brain Tissue, with implications for Optogenetics. Sci. Rep. 2015, 5, 11501. [Google Scholar] [CrossRef] [Green Version]
- Svaasand, L.O.; Ellingsen, R. Optical properties of human brain Photochem. Photobiol. 1983, 38, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Yoo, K.M.; Alfano, R.R. Time-resolved coherent and incoherent components of forward light scattering in random media. Opt. Lett. 1990, 15, 320–322. [Google Scholar] [CrossRef] [PubMed]
- Lax, M.; Nayaramamurti, V.; Fulton, R.C. Laser Optics of Condensed Matter; Plenum: New York, NY, USA, 1987; p. 229. [Google Scholar]
- Giacomelli, M.G.; Wax, A. Imaging beyond the ballistic limit in coherence imaging using multiply scattered light. Opt. Express 2011, 19, 4268–4279. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wu, H. Biomedical Optics: Principles and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Tuchin, V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis; SPIE Press: Bellingham, WA, USA, 2000. [Google Scholar]
- Prahl, S. Mie Scattering Calculator. Available online: https://omlc.org/calc/mie_calc.html (accessed on 10 October 2022).
- Zhestkov, D.M.; Tuchin, V.V.; Bashkatov, A.N.; Genina, E.A. Optical Immersion of Erythrocytes in Blood: A Theoretical Modeling; SPIE: Bellingham, WA, USA, 2004; p. 5. [Google Scholar]
- Friebel, M.; Roggan, A.; Müller, G.; Meinke, M. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J. Biomed. Opt. 2006, 11, 034021. [Google Scholar] [CrossRef]
- Jiang, W.; Almadi, M.; Salas, N.; Rajguru, S. Optical Properties of Biological Tissues Measured at Infrared Wavelengths. Biomedical Optics 2014 OSA Technical Digest (Online) (Optica Publishing Group, 2014), Paper BT3A.42. Available online: https://faculty.ksu.edu.sa/sites/default/files/biooptics_2014_optical20properties.pdf (accessed on 17 November 2022).
- Bakhsheshi, M.F.; Lee, T. Non-invasive monitoring of brain temperature by near-infrared spectroscopy. Temperature 2014, 2, 31–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.B.; Ali, J.H.; Alfano, R.R.; Vitenson, J.H.; Lombardo, M.J. Spectral polarization imaging of human rectum-membrane-prostate tissues. IEEE J. Sel. Top. Quantum Electron. 2003, 9, 288–293. [Google Scholar] [CrossRef]
- Alfano, R.; Ali, J.; Wang, W.; Zevallos, M. Detecting Human Cancer through Spectral Optical Imaging Using Key Water Absorption Wavelengths. US Patent 7,706,862, 27 April 2010. [Google Scholar]
- Barlow, C.H.; Burns, D.H.; Callis, J.B. Breast Biopsy Analysis by Spectroscopic Imaging. In Photon Migration in Tissues; Chance, B., Ed.; Springer: Boston, MA, USA, 1989. [Google Scholar]
- Cai, W.; Das, B.B.; Liu, F.; Zevallos, M.; Lax, M.; Alfano, R.R. Time-resolved optical diffusion tomographic image reconstruction in highly scattering turbid media. Proc. Natl. Acad. Sci. USA 1996, 93, 13561–13564. [Google Scholar] [CrossRef]
- Satat, G.; Heshmat, B.; Raviv, D.; Raskar, R. All photons imaging through volumetric scattering. Sci. Rep. 2016, 6, 33946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radford, J.; Lyons, A.; Tonolini, F.; Faccio, D. Role of late photons in diffuse optical imaging. Opt. Express 2020, 28, 29486–29495. [Google Scholar] [CrossRef]
- Yaroslavsky, A.N.; Schulze, P.C.; Yaroslavsky, I.V.; Schober, R.; Ulrich, F.; Schwarzmaier, H.J. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near-infrared spectral range. Phys. Med. Biol. 2002, 47, 2059–2073. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.H. Near-Infrared Light Propagation in an Adult Head Model with Refractive Index Mismatch. ETRI J. 2005, 27, 377–384. [Google Scholar] [CrossRef]
- Martins, I.S.; Silva, H.F.; Tuchin, V.V.; Oliveira, L.M. Fast Estimation of the Spectral Optical Properties of Rabbit Pancreas and Pigment Content Analysis. Photonics 2022, 9, 122. [Google Scholar] [CrossRef]
- Biswas, T.; Luu, T. In vivo MR Measurement of Refractive Index, Relative Water Content and T2 Relaxation time of Various Brain lesions With Clinical Application to Discriminate Brain Lesions. Internet J. Radiol. 2009, 13, 1. [Google Scholar]
- Franze, K.; Grosche, J.; Skatchkov, S.N.; Schinkinger, S.; Foja, C.; Schild, D.; Uckermann, O.; Travis, K.; Reichenbach, A.; Guck, J. Müller cells are living optical fibers in the vertebrate retina. Proc. Natl. Acad. Sci. USA 2007, 104, 8287–8292. [Google Scholar] [CrossRef] [Green Version]
- Vonsattel, J.P.G.; Keller, C.; Ramirez, E.P.C. Chapter 4—Huntington’s disease—Neuropathology. Handb. Clin. Neurol. 2011, 100, 83–100. [Google Scholar]
- Ribeiro, P.F.M.; Ventura-Antunes, L.; Gabi, M.; Mota, B.; Grinberg, L.T.; Farfel, J.M.; Ferretti-Rebustini, R.E.L.; Leite, R.E.P.; Filho, W.J.; Herculano-Houzel, S. The human cerebral cortex is neither one nor many: Neuronal distribution reveals two quantitatively different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front. Neuroanat. 2013, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Young, N.A.; Collins, C.E.; Kaas, J.H. Cell and neuron densities in the primary motor cortex of primates. Front. Neural Circuits 2013, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Collins, C.E.; Airey, D.C.; Young, N.A.; Leitch, D.B.; Kaas, J.H. Neuron densities vary across and within cortical areas in primates. Proc. Natl. Acad. Sci. USA 2010, 107, 15927–15932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herculano-Houzel, S.; Lent, R. Isotropic fractionator: A simple, rapid method for the quantification of total cell and neuron numbers in the brain. J. Neurosci. 2005, 25, 2518–2521. [Google Scholar] [CrossRef]
- Miller, D.J.; Balaram, P.; Young, N.A.; Kaas, J.H. Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Front. Neuroanat. 2014, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herculano-Houzel, S.; von Bartheld, C.S.; Miller, D.J.; Kaas, J.H. How to count cells: The advantages and disadvantages of the isotropic fractionator compared with stereology. Cell Tissue Res. 2015, 360, 29–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- von Bartheld, C.S.; Bahney, J.; Herculano-Houzel, S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J. Comp. Neurol. 2016, 524, 3865–3895. [Google Scholar] [CrossRef] [Green Version]
- Neves, K.; Menezes Guimarães, D.; Rayêe, D.; Valério-Gomes, B.; Meneses Iack, P.; Lent, R.; Mota, B. The reliability of the isotropic fractionator method for counting total cells and neurons. J. Neurosci. Methods 2019, 326, 108392. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, M.; Guo, Y.; Hu, H.; Chen, K. Quantification of surviving neurons after contusion, dislocation, and distraction spinal cord injuries using automated methods. J. Exp. Neurosci. 2019, 13, 1179069519869617. [Google Scholar] [CrossRef]
- Kaufman, D.P.; Kandle, P.F.; Murray, I.; Dhamoon, A.S. Physiology, Oxyhemoglobin Dissociation Curve; Updated 2022 August 1; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Caon, T.; Simões, C.M. Effect of freezing and type of mucosa on ex vivo drug permeability parameters. AAPS PharmSciTech 2011, 12, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Estrada, L.I.; Robinson, A.A.; Amaral, A.C.; Giannaris, E.L.; Heyworth, N.C.; Mortazavi, F.; Ngwenya, L.B.; Roberts, D.E.; Cabral, H.J.; Killiany, R.J.; et al. Evaluation of Long-Term Cryostorage of Brain Tissue Sections for Quantitative Histochemistry. J. Histochem. Cytochem. 2017, 65, 153–171. [Google Scholar] [CrossRef] [Green Version]
- Bao, W.G.; Zhang, X.; Zhang, J.G.; Zhou, W.J.; Bi, T.N.; Wang, J.C.; Yan, W.H.; Lin, A. Biobanking of fresh-frozen human colon tissues: Impact of tissue ex-vivo ischemia times and storage periods on RNA quality. Ann. Surg. Oncol. 2013, 20, 1737–1744. [Google Scholar] [CrossRef]
- Steen, J.M. Optical Methods and Instrumentation in Brain Imaging and Therapy; Springer: New York, NY, USA, 2014. [Google Scholar]
- Yue, L.; Humayun, M.S. Monte Carlo analysis of the enhanced transcranial penetration using distributed near-infrared emitter array. J. Biomed. Opt. 2015, 20, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chang, X.; Pengbo, W.; Yan, L.; Lanhui, W. Photon penetration depth in human brain for light stimulation and treatment: A realistic Monte Carlo simulation study. J. Innov. Opt. Health Sci. 2017, 10, 5. [Google Scholar] [CrossRef]
- Shi, L.; Sordillo, L.A.; Rodríguez-Contreras, A.; Alfano, R. Transmission in near-infrared optical windows for deep brain imaging. J. Biophotonics 2016, 9, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Scholkmann, F.; Zohdi, H.; Nasseri, N.; Wolf, U. Absolute Values of Optical Properties (μa, μs, μeff and DPF) of Human Head Tissue: Dependence on Head Region and Individual. Adv. Exp. Med. Biol. 2018, 1072, 325–330. [Google Scholar]
Wavelength λ (nm) | Absorbance A | Attenuation Coefficient μe (mm−1) | Reduced Scattering Coefficient (mm−1) | Penetration Depth δ (mm) |
---|---|---|---|---|
580 | 2.29 | 17.75 | ||
800 | 1.44 | ~1.12 | 3.83 | |
980 | 1.45 | 11.24 |
Diameter d in μm | Wavelength λ in μm | Index of Refraction of the Medium nmedium | Index of Refraction of Neurons nneuron | Index of Refraction- Imaginary Part K | Scattering Efficiency Qs |
---|---|---|---|---|---|
12 | 0.800 | 1.34 | 1.4 | 0.0000013 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, J.H. Spectral Optical Properties of Gray Matter in Human Male Brain Tissue Measured at 400–1100 nm. Optics 2023, 4, 1-10. https://doi.org/10.3390/opt4010001
Ali JH. Spectral Optical Properties of Gray Matter in Human Male Brain Tissue Measured at 400–1100 nm. Optics. 2023; 4(1):1-10. https://doi.org/10.3390/opt4010001
Chicago/Turabian StyleAli, Jamal H. 2023. "Spectral Optical Properties of Gray Matter in Human Male Brain Tissue Measured at 400–1100 nm" Optics 4, no. 1: 1-10. https://doi.org/10.3390/opt4010001
APA StyleAli, J. H. (2023). Spectral Optical Properties of Gray Matter in Human Male Brain Tissue Measured at 400–1100 nm. Optics, 4(1), 1-10. https://doi.org/10.3390/opt4010001