Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator
Abstract
1. Introduction
2. Methods
2.1. Determination of Beta Coefficients
2.2. Pulse Propagation Model
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ghotbi, M.; Esteban-Martin, A.; Ebrahim-Zadeh, M. BiB3O6 femtosecond optical parametric oscillator. Opt. Lett. 2006, 31, 3128–3130. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Hu, M.; Fan, J.; Song, Y.; Liu, B.; Chai, L.; Wang, C.; Reid, D.T. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator. Opt. Express 2015, 23, 6181–6186. [Google Scholar] [CrossRef] [PubMed]
- Maidment, L.; Schunemann, P.G.; Reid, D.T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt. Lett. 2016, 41, 4261–4264. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Castro-Marin, P.; Kara, O.; Farrell, C.; Reid, D.T. High resolution ZrF4-fiber-delivered multi-species infrared spectroscopy. OSA Contin. 2020, 3, 3595–3603. [Google Scholar] [CrossRef]
- Balskus, K.; Schilt, S.; Wittwer, V.J.; Brochard, P.; Ploetzing, T.; Jornod, N.; McCracken, R.A.; Zhang, Z.; Bartels, A.; Reid, D.T.; et al. Frequency comb metrology with an optical parametric oscillator. Opt. Express 2016, 24, 8370–8381. [Google Scholar] [CrossRef] [PubMed]
- Kobat, D.; Horton, N.G.; Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 2011, 16, 1–5. [Google Scholar] [CrossRef]
- Edelstein, D.C.; Wachman, E.S.; Tang, C.L. Broadly tunable high repetition rate femtosecond optical parametric oscillator. Appl. Phys. Lett. 1989, 54, 1728–1730. [Google Scholar] [CrossRef]
- Kimmelma, O.; Kumar, S.C.; Esteban-Martin, A.; Ebrahim-Zadeh, M. Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser. Opt. Lett. 2013, 38, 4550–4553. [Google Scholar] [CrossRef] [PubMed]
- Lamour, T.P.; Reid, D.T. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator. Opt. Express 2011, 19, 17557–17562. [Google Scholar] [CrossRef] [PubMed]
- Südmeyer, T.; der Au, J.A.; Paschotta, R.; Keller, U.; Smith, P.G.R.; Ross, G.W.; Hanna, D.C. Femtosecond fiber-feedback optical parametric oscillator. Opt. Lett. 2001, 26, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Kienle, F.; Teh, P.S.; Alam, S.U.; Gawith, C.B.E.; Hanna, D.C.; Richardson, D.J.; Shepherd, D.P. Compact, high-pulse-energy, picosecond optical parametric oscillator. Opt. Lett. 2010, 35, 3580–3582. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.F.; Kumar, S.C.; Paoletta, T.; Ebrahim-Zadeh, M. Widely tunable femtosecond soliton generation in a fiber-feedback optical parametric oscillator. Optica 2020, 7, 426–433. [Google Scholar] [CrossRef]
- Ingold, K.A.; Marandi, A.; Digonnet, M.J.F.; Byer, R.L. Fiber-feedback optical parametric oscillator for half-harmonic generation of sub-100-fs frequency combs around 2 m. Opt. Lett. 2015, 40, 4368–4371. [Google Scholar] [CrossRef] [PubMed]
- Nejadmalayeri, A.H.; Herman, P.R.; Burghoff, J.; Will, M.; Nolte, S.; Tünnermann, A. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett. 2005, 30, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Ouzounov, D.; Wang, T.; Wang, M.; Feng, D.D.; Horton, N.G.; Cruz-Hernández, J.C.; Cheng, Y.T.; Reimer, J.; Tolias, A.S.; Nishimura, N.; et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 2017, 14, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photon. 2012, 6, 440–449. [Google Scholar] [CrossRef]
- Agrawal, G.P. Nonlinear Fiber Optics; Academic Press: Cambridge, MA, USA, 2001; Volume 3, pp. 1–30. [Google Scholar]
- Ciąćka, P.; Rampur, A.; Heidt, A.; Feurer, T.; Klimczak, M. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. J. Opt. Soc. Am. B 2018, 35, 1301–1307. [Google Scholar] [CrossRef]
- Merritt, P.; Tatam, R.; Jackson, D. Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber. J. Light. Technol. 1989, 7, 703–716. [Google Scholar] [CrossRef]
- Hlubina, P.; Kadulová, M.; Ciprian, D. Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength. J. Eur. Opt. Soc. Rapid Publ. 2012, 7. [Google Scholar] [CrossRef]
- Corning SMF-28 Ultra Optical Fiber Product Information. Available online: https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (accessed on 22 April 2021).
- Rohatgi, A. Webplotdigitizer: Version 4.4. Available online: https://automeris.io/WebPlotDigitizer (accessed on 22 April 2021).
- Coherent-Nufern UHNA Fiber Product Information. Available online: https://www.nufern.com/pam/optical_fibers/spec/id/988/?2141 (accessed on 22 April 2021).
SMF-28 | UHNA1 | UHNA3 | UHNA4 | UHNA7 | |
---|---|---|---|---|---|
1550 nm | −0.0215 | 0.0436 | 0.1065 | 0.0694 | 0.0263 |
1700 nm | −0.0371 | 0.0463 | 0.1178 | 0.0814 | 0.0316 |
2090 nm | −0.0852 | 0.0207 | 0.1276 | 0.0801 | 0.0514 |
SMF-28 | UHNA1 | UHNA3 | UHNA4 | UHNA7 | |
---|---|---|---|---|---|
1550 nm | 0.1256 | −0.0392 | −0.1133 | −0.1149 | −0.0402 |
1700 nm | 0.1679 | −0.0023 | −0.0947 | −0.1006 | −0.0603 |
2090 nm | 0.3173 | 0.3384 | 0.0290 | 0.2062 | −0.1452 |
UHNA1 | UHNA3 | UHNA4 | UHNA7 | |
---|---|---|---|---|
1550 nm | 0.325/0.35/0.325 | 0.41/0.18/0.41 | 0.38/0.24/0.38 | 0.275/0.45/0.275 |
1700 nm | 0.265/0.47/0.265 | 0.38/0.24/0.38 | 0.34/0.32/0.34 | 0.23/0.54/0.23 |
2090 nm | 0.09/0.82/0.09 | 0.30/0.40/0.30 | 0.235/0.53/0.235 | 0.185/0.63/0.185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allan, E.; Ballantine, C.; Robarts, S.C.; Bajek, D.; McCracken, R.A. Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator. Optics 2021, 2, 96-102. https://doi.org/10.3390/opt2020010
Allan E, Ballantine C, Robarts SC, Bajek D, McCracken RA. Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator. Optics. 2021; 2(2):96-102. https://doi.org/10.3390/opt2020010
Chicago/Turabian StyleAllan, Ewan, Craig Ballantine, Sebastian C. Robarts, David Bajek, and Richard A. McCracken. 2021. "Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator" Optics 2, no. 2: 96-102. https://doi.org/10.3390/opt2020010
APA StyleAllan, E., Ballantine, C., Robarts, S. C., Bajek, D., & McCracken, R. A. (2021). Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator. Optics, 2(2), 96-102. https://doi.org/10.3390/opt2020010