Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator
Abstract
:1. Introduction
2. Methods
2.1. Determination of Beta Coefficients
2.2. Pulse Propagation Model
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ghotbi, M.; Esteban-Martin, A.; Ebrahim-Zadeh, M. BiB3O6 femtosecond optical parametric oscillator. Opt. Lett. 2006, 31, 3128–3130. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Hu, M.; Fan, J.; Song, Y.; Liu, B.; Chai, L.; Wang, C.; Reid, D.T. High power tunable femtosecond ultraviolet laser source based on an Yb-fiber-laser pumped optical parametric oscillator. Opt. Express 2015, 23, 6181–6186. [Google Scholar] [CrossRef] [PubMed]
- Maidment, L.; Schunemann, P.G.; Reid, D.T. Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator. Opt. Lett. 2016, 41, 4261–4264. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.; Castro-Marin, P.; Kara, O.; Farrell, C.; Reid, D.T. High resolution ZrF4-fiber-delivered multi-species infrared spectroscopy. OSA Contin. 2020, 3, 3595–3603. [Google Scholar] [CrossRef]
- Balskus, K.; Schilt, S.; Wittwer, V.J.; Brochard, P.; Ploetzing, T.; Jornod, N.; McCracken, R.A.; Zhang, Z.; Bartels, A.; Reid, D.T.; et al. Frequency comb metrology with an optical parametric oscillator. Opt. Express 2016, 24, 8370–8381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobat, D.; Horton, N.G.; Xu, C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J. Biomed. Opt. 2011, 16, 1–5. [Google Scholar] [CrossRef]
- Edelstein, D.C.; Wachman, E.S.; Tang, C.L. Broadly tunable high repetition rate femtosecond optical parametric oscillator. Appl. Phys. Lett. 1989, 54, 1728–1730. [Google Scholar] [CrossRef]
- Kimmelma, O.; Kumar, S.C.; Esteban-Martin, A.; Ebrahim-Zadeh, M. Multi-gigahertz picosecond optical parametric oscillator pumped by 80-MHz Yb-fiber laser. Opt. Lett. 2013, 38, 4550–4553. [Google Scholar] [CrossRef] [PubMed]
- Lamour, T.P.; Reid, D.T. 650-nJ pulses from a cavity-dumped Yb:fiber-pumped ultrafast optical parametric oscillator. Opt. Express 2011, 19, 17557–17562. [Google Scholar] [CrossRef] [PubMed]
- Südmeyer, T.; der Au, J.A.; Paschotta, R.; Keller, U.; Smith, P.G.R.; Ross, G.W.; Hanna, D.C. Femtosecond fiber-feedback optical parametric oscillator. Opt. Lett. 2001, 26, 304–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kienle, F.; Teh, P.S.; Alam, S.U.; Gawith, C.B.E.; Hanna, D.C.; Richardson, D.J.; Shepherd, D.P. Compact, high-pulse-energy, picosecond optical parametric oscillator. Opt. Lett. 2010, 35, 3580–3582. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, C.F.; Kumar, S.C.; Paoletta, T.; Ebrahim-Zadeh, M. Widely tunable femtosecond soliton generation in a fiber-feedback optical parametric oscillator. Optica 2020, 7, 426–433. [Google Scholar] [CrossRef]
- Ingold, K.A.; Marandi, A.; Digonnet, M.J.F.; Byer, R.L. Fiber-feedback optical parametric oscillator for half-harmonic generation of sub-100-fs frequency combs around 2 m. Opt. Lett. 2015, 40, 4368–4371. [Google Scholar] [CrossRef] [PubMed]
- Nejadmalayeri, A.H.; Herman, P.R.; Burghoff, J.; Will, M.; Nolte, S.; Tünnermann, A. Inscription of optical waveguides in crystalline silicon by mid-infrared femtosecond laser pulses. Opt. Lett. 2005, 30, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Ouzounov, D.; Wang, T.; Wang, M.; Feng, D.D.; Horton, N.G.; Cruz-Hernández, J.C.; Cheng, Y.T.; Reimer, J.; Tolias, A.S.; Nishimura, N.; et al. In vivo three-photon imaging of activity of GCaMP6-labeled neurons deep in intact mouse brain. Nat. Methods 2017, 14, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Schliesser, A.; Picqué, N.; Hänsch, T.W. Mid-infrared frequency combs. Nat. Photon. 2012, 6, 440–449. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, G.P. Nonlinear Fiber Optics; Academic Press: Cambridge, MA, USA, 2001; Volume 3, pp. 1–30. [Google Scholar]
- Ciąćka, P.; Rampur, A.; Heidt, A.; Feurer, T.; Klimczak, M. Dispersion measurement of ultra-high numerical aperture fibers covering thulium, holmium, and erbium emission wavelengths. J. Opt. Soc. Am. B 2018, 35, 1301–1307. [Google Scholar] [CrossRef]
- Merritt, P.; Tatam, R.; Jackson, D. Interferometric chromatic dispersion measurements on short lengths of monomode optical fiber. J. Light. Technol. 1989, 7, 703–716. [Google Scholar] [CrossRef]
- Hlubina, P.; Kadulová, M.; Ciprian, D. Spectral interferometry-based chromatic dispersion measurement of fibre including the zero-dispersion wavelength. J. Eur. Opt. Soc. Rapid Publ. 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Corning SMF-28 Ultra Optical Fiber Product Information. Available online: https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (accessed on 22 April 2021).
- Rohatgi, A. Webplotdigitizer: Version 4.4. Available online: https://automeris.io/WebPlotDigitizer (accessed on 22 April 2021).
- Coherent-Nufern UHNA Fiber Product Information. Available online: https://www.nufern.com/pam/optical_fibers/spec/id/988/?2141 (accessed on 22 April 2021).
SMF-28 | UHNA1 | UHNA3 | UHNA4 | UHNA7 | |
---|---|---|---|---|---|
1550 nm | −0.0215 | 0.0436 | 0.1065 | 0.0694 | 0.0263 |
1700 nm | −0.0371 | 0.0463 | 0.1178 | 0.0814 | 0.0316 |
2090 nm | −0.0852 | 0.0207 | 0.1276 | 0.0801 | 0.0514 |
SMF-28 | UHNA1 | UHNA3 | UHNA4 | UHNA7 | |
---|---|---|---|---|---|
1550 nm | 0.1256 | −0.0392 | −0.1133 | −0.1149 | −0.0402 |
1700 nm | 0.1679 | −0.0023 | −0.0947 | −0.1006 | −0.0603 |
2090 nm | 0.3173 | 0.3384 | 0.0290 | 0.2062 | −0.1452 |
UHNA1 | UHNA3 | UHNA4 | UHNA7 | |
---|---|---|---|---|
1550 nm | 0.325/0.35/0.325 | 0.41/0.18/0.41 | 0.38/0.24/0.38 | 0.275/0.45/0.275 |
1700 nm | 0.265/0.47/0.265 | 0.38/0.24/0.38 | 0.34/0.32/0.34 | 0.23/0.54/0.23 |
2090 nm | 0.09/0.82/0.09 | 0.30/0.40/0.30 | 0.235/0.53/0.235 | 0.185/0.63/0.185 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allan, E.; Ballantine, C.; Robarts, S.C.; Bajek, D.; McCracken, R.A. Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator. Optics 2021, 2, 96-102. https://doi.org/10.3390/opt2020010
Allan E, Ballantine C, Robarts SC, Bajek D, McCracken RA. Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator. Optics. 2021; 2(2):96-102. https://doi.org/10.3390/opt2020010
Chicago/Turabian StyleAllan, Ewan, Craig Ballantine, Sebastian C. Robarts, David Bajek, and Richard A. McCracken. 2021. "Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator" Optics 2, no. 2: 96-102. https://doi.org/10.3390/opt2020010
APA StyleAllan, E., Ballantine, C., Robarts, S. C., Bajek, D., & McCracken, R. A. (2021). Modelling Dispersion Compensation in a Cascaded-Fiber-Feedback Optical Parametric Oscillator. Optics, 2(2), 96-102. https://doi.org/10.3390/opt2020010