Tunnel Inspection Review: Normative Practices and Non-Destructive Method Advancements for Tunnels with Concrete Cover
Abstract
:1. Introduction
2. Current Inspection Procedures
3. Non-Destructive Tests for Tunnel Inspection
3.1. Visual Inspection
3.2. Hammering Method
3.3. Impact-Echo
3.4. Ultrasonic Method
Ultrasonic Tomography
3.5. Ground Penetration Radar
3.6. Transient Electromagnetic Radar
3.7. Photogrammetry
3.8. Infrared Thermography
3.9. Multispectral
3.10. Laser Scanning
3.11. Laser-Vibrometer Method
3.12. Automation Inspection Procedures
4. Summary of NDT Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Federal Highway Administration. Tunnel Operations, Maintenance, Inspection, and Evaluation (TOMIE) Manual; Federal Highway Administration: Washington, DC, USA, 2015.
- Centre d’Études des Tunnels. Guide de L’inspection du Génie Civil des Tunnels Routiers; Ministère de l’Écologie, du Développement durable et de l’Énergie: Paris, France, 2015.
- Balaguer, C.; Montero, R.; Victores, J.G.; Martínez, S.; Jardón, A. Towards Fully Automated Tunnel Inspection: A Survey and Future Trends. In Proceedings of the 31st International Symposium on Automation and Robotics in Construction and Mining (ISARC), Sydney, Australia, 9–11 July 2014; International Association for Automation and Robotics in Construction (IAARC): Montreal, Canada, 2014; pp. 19–33. [Google Scholar] [CrossRef]
- Montero, R.; Victores, J.; Martínez, S.; Jardón, A.; Balaguer, C. Past, present and future of robotic tunnel inspection. Autom. Constr. 2015, 59, 99–112. [Google Scholar] [CrossRef]
- Sjölander, A.; Belloni, V.; Ansell, A.; Nordström, E. Towards Automated Inspections of Tunnels: A Review of Optical Inspections and Autonomous Assessment of Concrete Tunnel Linings. Sensors 2023, 23, 3189. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Wang, L.; Zhang, B.; Dai, X.; Ye, J.; Sun, B.; Liu, N.; Wang, Z.; Zhao, Y. Tunnel lining detection and retrofitting. Autom. Constr. 2023, 152, 104881. [Google Scholar] [CrossRef]
- Haack, A.; Schreyer, J.; Jackel, G. Report to ITA Working Group on Maintenance and Repair of underground structures: State-of-the-art of non-destructive testing methods for determining the state of a tunnel lining. Tunn. Undergr. Space Technol. 1995, 10, 413–431. [Google Scholar] [CrossRef]
- McDonald, T.; Robinson, M.; Tian, G.Y. Developments in 3D Visualisation of the Rail Tunnel Subsurface for Inspection and Monitoring. Appl. Sci. 2022, 12, 11310. [Google Scholar] [CrossRef]
- Waka Kotahi New Zealand Transport Agency. Bridges and Other Significant Structures Inspection Policy; Waka Kotahi New Zealand Transport Agency: Wellington, New Zealand, 2022.
- Waka Kotahi New Zealand Transport Agency. Geotechnical Structures Inspection Policy; Waka Kotahi New Zealand Transport Agency: Wellington, New Zealand, 2022.
- Waka Kotahi New Zealand Transport Agency. Specification for the Management of Tunnels; Waka Kotahi New Zealand Transport Agency: Wellington, New Zealand, 2023.
- NAP 2-4-0.1; Norma ADIF Plataforma—Inspección Principal de Túneles de Ferrocarril. Administrador de Infraestructuras Ferroviarias (ADIF): Madrid, Espanha, 2020.
- NAP 2-4-1.1; Norma ADIF Plataforma—Inspección Principal de Túneles de Ferrocarril. Administrador de Infraestructuras Ferroviarias (ADIF): Madrid, Espanha, 2021.
- CS452; Design Manual for Roads and Bridges. Highways England: Birmingham, UK, 2019.
- CS450; Inspection of highway structures. Highways England: Birmingham, UK, 2019.
- McKibbins, L.; Elmer, R.; Roberts, K. Tunnels: Inspection, Assessment and Maintenance; CIRIA Report C671; CIRIA: London, UK, 2009. [Google Scholar]
- Poncetti, B.L.; Ruiz, D.V.; Assis, L.S.d.; Machado, L.B.; Domingues, A.B.; Futai, M.M. An overview of Brazilian concrete tunnel inspection practices and international procedures. Rev. IBRACON Estruturas E Mater. 2025, 18, e18207. [Google Scholar] [CrossRef]
- Ai, Q.; Yuan, Y.; Shen, S.L.; Wang, H.; Huang, X. Investigation on inspection scheduling for the maintenance of tunnel with different degradation modes. Tunn. Undergr. Space Technol. 2020, 106, 103589. [Google Scholar] [CrossRef]
- Bellini Machado, L.; Massao Futai, M. Tunnel performance prediction through degradation inspection and digital twin construction. Tunn. Undergr. Space Technol. 2024, 144, 105544. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Y.; Liu, J. Assessment service state of tunnel structure. Tunn. Undergr. Space Technol. 2012, 27, 72–85. [Google Scholar] [CrossRef]
- Llanca, D.; Breul, P.; Bacconnet, C. Improving the diagnosis methodology for masonry tunnels. Tunn. Undergr. Space Technol. 2017, 70, 55–64. [Google Scholar] [CrossRef]
- Dawood, T.; Zhu, Z.; Zayed, T. Deterioration mapping in subway infrastructure using sensory data of GPR. Tunn. Undergr. Space Technol. 2020, 103, 103487. [Google Scholar] [CrossRef]
- Tosti, F.; Ferrante, C. Using Ground Penetrating Radar Methods to Investigate Reinforced Concrete Structures. Surv. Geophys. 2019, 41, 485–530. [Google Scholar] [CrossRef]
- Cao, R.; Ma, M.; Liang, R.; Niu, C. Detecting the Void behind the Tunnel Lining by Impact-Echo Methods with Different Signal Analysis Approaches. Appl. Sci. 2019, 9, 3280. [Google Scholar] [CrossRef]
- Song, K.I.; Cho, G.C. Bonding state evaluation of tunnel shotcrete applied onto hard rocks using the impact-echo method. NDT E Int. 2009, 42, 487–500. [Google Scholar] [CrossRef]
- White, J.; Hurlebaus, S.; Shokouhi, P.; Wimsatt, A. Use of Ultrasonic Tomography to Detect Structural Impairment in Tunnel Linings: Validation Study and Field Evaluation. Transp. Res. Rec. 2014, 2407, 20–31. [Google Scholar] [CrossRef]
- Schabowicz, K. Methodology for non-destructive identification of thickness of unilaterally accessible concrete elements by means of state-of-the-art acoustic techniques. J. Civ. Eng. Manag. 2013, 19, 325–334. [Google Scholar] [CrossRef]
- De La Haza, A.O.; Samokrutov, A.A.; Samokrutov, P.A. Assessment of concrete structures using the Mira and Eyecon ultrasonic shear wave devices and the SAFT-C image reconstruction technique. Constr. Build. Mater. 2013, 38, 1276–1291. [Google Scholar] [CrossRef]
- Akamatsu, R.; Sugimoto, T.; Utagawa, N.; Katakura, K. Proposal of Non Contact Inspection Method for Concrete Structures Using High-Power Directional Sound Source and Scanning Laser Doppler Vibrometer. Jpn. J. Appl. Phys. 2013, 52, 07HC12. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sugimoto, T.; Utagawa, N.; Kuroda, C.; Kawakami, A. Detection of internal defects of concrete structures based on statistical evaluation of healthy part of concrete by the noncontact acoustic inspection method. Jpn. J. Appl. Phys. 2018, 57, 07LC13. [Google Scholar] [CrossRef]
- Xiang, L.; Zhou, H.-L.; Shu, Z.; Tan, S.-H.; Liang, G.-Q.; Zhu, J. GPR evaluation of the Damaoshan highway tunnel: A case study. NDT E Int. 2013, 59, 68–76. [Google Scholar] [CrossRef]
- Wai-Lok Lai, W.; Dérobert, X.; Annan, P. A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis. NDT E Int. 2018, 96, 58–78. [Google Scholar] [CrossRef]
- Alani, A.M.; Tosti, F. GPR applications in structural detailing of a major tunnel using different frequency antenna systems. Constr. Build. Mater. 2018, 158, 1111–1122. [Google Scholar] [CrossRef]
- Ye, Z.; Ye, Y. Comparison of Detection Effect of Cavities Behind Shield Tunnel Segment Using Transient Electromagnetic Radar and Ground Penetrating Radar. Geotech. Geol. Eng. 2019, 37, 4391–4403. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, C.; Ye, Y.; Zhu, W. Application of transient electromagnetic radar in quality evaluation of tunnel composite lining. Constr. Build. Mater. 2020, 240, 117958. [Google Scholar] [CrossRef]
- Geng, Q.; Ye, Y.; Wang, X. Identifying void defects behind Tunnel composite lining based on transient electromagnetic radar method. NDT E Int. 2022, 125, 102562. [Google Scholar] [CrossRef]
- Zhu, Y.K.; Tian, G.Y.; Lu, R.S.; Zhang, H. A Review of Optical NDT Technologies. Sensors 2011, 11, 7773–7798. [Google Scholar] [CrossRef]
- Konishi, S.; Kawakami, K.; Taguchi, M. Inspection Method with Infrared Thermometry for Detect Void in Subway Tunnel Lining. Procedia Eng. 2016, 165, 474–483. [Google Scholar] [CrossRef]
- Attard, L.; Debono, C.J.; Valentino, G.; Di Castro, M. Tunnel inspection using photogrammetric techniques and image processing: A review. ISPRS J. Photogramm. Remote Sens. 2018, 144, 180–188. [Google Scholar] [CrossRef]
- Yazdani, N.; Garcia, E.C.; Riad, M. 8 - Field assessment of concrete structures rehabilitated with FRP. In Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures; Woodhead Publishing: Sawston, UK, 2018; pp. 171–194. [Google Scholar] [CrossRef]
- Gibson, A.; Popovics, J.S. Lamb Wave Basis for Impact-Echo Method Analysis. J. Eng. Mech. 2005, 131, 438–443. [Google Scholar] [CrossRef]
- Mori, K.; Spagnoli, A.; Murakami, Y.; Kondo, G.; Torigoe, I. A new non-contacting non-destructive testing method for defect detection in concrete. NDT E Int. 2002, 35, 399–406. [Google Scholar] [CrossRef]
- Sansalone, M.; Carino, N.J. Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves; US Department of Commerce: Washington, DC, USA, 1986. [CrossRef]
- Lehmann, F. Practical applications of non-destructive test methods at a single-shell tunnel lining. In Proceedings of the 7th Fib Symposium, Stuttgart, Germany, 11–13 September 2008. [Google Scholar]
- ASTM C1383-04; Standard Test Method for Measuring the P-Wave and S-Wave Velocity in Concrete. ASTM International: West Conshohocken, PA, USA, 2004. [CrossRef]
- Aggelis, D.; Shiotani, T.; Kasai, K. Evaluation of grouting in tunnel lining using impact-echo. Tunn. Undergr. Space Technol. 2008, 23, 629–637. [Google Scholar] [CrossRef]
- Yao, F.; Chen, G.; Abula, A. Research on signal processing of segment-grout defect in tunnel based on impact-echo method. Constr. Build. Mater. 2018, 187, 280–289. [Google Scholar] [CrossRef]
- Sung, W.; Song, K.I.; Kim, K.Y.; Ryu, H.H. Development of Grouting Quality Evaluation System for a Shield TBM Tunnel Using the Impact-Echo Method. KSCE J. Civ. Eng. 2024, 28, 5335–5346. [Google Scholar] [CrossRef]
- Song, K.I.; Cho, G.C. Numerical study on the evaluation of tunnel shotcrete using the Impact-Echo method coupled with Fourier transform and short-time Fourier transform. Int. J. Rock Mech. Min. Sci. 2010, 47, 1274–1288. [Google Scholar] [CrossRef]
- Cheng, C.C.; Yu, C.P.; Liou, T. Evaluation of interfacial bond condition between concrete plate-like structure and substrate using the simulated transfer function derived by IE. NDT E Int. 2009, 42, 678–689. [Google Scholar] [CrossRef]
- Anoni, L.G.; Haach, V.G.; Khazanovich, L. Image reconstruction in concrete ultrasound tomography: A systematic review. Constr. Build. Mater. 2024, 441, 137472. [Google Scholar] [CrossRef]
- Bishko, A.V.; Samokrutov, A.A.; Shevaldykin, V.G. Ultrasonic echo-pulse tomography of concrete using shear wave low-frequency phased antenna arrays. In Proceedings of the 17th World Conference on Nondestructive Testing, Shanghai, China, 25–28 October 2008. [Google Scholar]
- Gorzelańczyk, T.; Hoła, J.; Sadowski, Ł.; Schabowicz, K. Methodology of nondestructive identification of defective concrete zones in unilaterally accessible massive members. J. Civ. Eng. Manag. 2013, 19, 775–786. [Google Scholar] [CrossRef]
- White, J.B.; Wieghaus, K.T.; Karthik, M.M.; Shokouhi, P.; Hurlebaus, S.; Wimsatt, A. Nondestructive Testing Methods for Underwater Tunnel Linings: Practical Application at Chesapeake Channel Tunnel. J. Infrastruct. Syst. 2017, 23, B4016011. [Google Scholar] [CrossRef]
- Chen, X.; Lin, Z.; Yang, Y.; Qu, P.; Feng, W.; Yang, H. Experimental study on internal damage mechanisms and performance state perception of tunnel linings under different loading paths. Eng. Fail. Anal. 2025, 168, 109084. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Li, D.; Zhang, J. Two-step detection of concrete internal condition using array ultrasound and deep learning. NDT E Int. 2023, 139, 102945. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, X.; Liu, L.; Liu, T. Detection of grouting defects behind shield segments via shear wave ultrasound arrays: Numerical and full-scale model experiments. Tunn. Undergr. Space Technol. 2025, 157, 106287. [Google Scholar] [CrossRef]
- Lin, S.; Shams, S.; Choi, H.; Azari, H. Ultrasonic imaging of multi-layer concrete structures. NDT E Int. 2018, 98, 101–109. [Google Scholar] [CrossRef]
- Núñez-Nieto, X.; Solla, M.; Prego, F.J.; Lorenzo, H. Assesing the applicability of GPR method for tunnelling inspection: Characterization and volumetric reconstruction. In Proceedings of the 2015 8th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), Florence, Italy, 7–10 July 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Puntu, J.M.; Chang, P.Y.; Lin, D.J.; Amania, H.H.; Doyoro, Y.G. A Comprehensive Evaluation for the Tunnel Conditions with Ground Penetrating Radar Measurements. Remote Sens. 2021, 13, 4250. [Google Scholar] [CrossRef]
- Li, N.; Wu, R.; Li, H.; Wang, H.; Gui, Z.; Song, D. MV-GPRNet: Multi-View Subsurface Defect Detection Network for Airport Runway Inspection Based on GPR. Remote Sens. 2022, 14, 4472. [Google Scholar] [CrossRef]
- He, W.; Wai-Lok Lai, W. Unified optimization-based analysis of GPR hyperbolic fitting models. Tunn. Undergr. Space Technol. 2024, 146, 105633. [Google Scholar] [CrossRef]
- Yang, D.; Capozzoli, L.; Catapano, I.; Martino, G.D.; Esposito, G.; Morelli, G.; Persico, R. Accounting for the Different Propagation Velocities for the Focusing and Time–Depth Conversion in a Layered Medium. Appl. Sci. 2024, 14, 11812. [Google Scholar] [CrossRef]
- Wu, X.; Bao, X.; Shen, J.; Chen, X.; Cui, H. Evaluation of Void Defects behind Tunnel Lining through GPR forward Simulation. Sensors 2022, 22, 9702. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, X.; Xie, X.; Zhou, B.; Xu, C.; Lambot, S. Measuring annular thickness of backfill grouting behind shield tunnel lining based on GPR monitoring and data mining. Autom. Constr. 2023, 150, 104811. [Google Scholar] [CrossRef]
- Zan, Y.; Li, Z.; Su, G.; Zhang, X. An innovative vehicle-mounted GPR technique for fast and efficient monitoring of tunnel lining structural conditions. Case Stud. Nondestruct. Test. Eval. 2016, 6, 63–69. [Google Scholar] [CrossRef]
- Li, C.; Li, M.J.; Zhao, Y.G.; Liu, H.; Wan, Z.; Xu, J.C.; Xu, X.P.; Chen, Y.; Wang, B. Layer recognition and thickness evaluation of tunnel lining based on ground penetrating radar measurements. J. Appl. Geophys. 2011, 73, 45–48. [Google Scholar] [CrossRef]
- Zhang, S.; Han, W.; Li, Y.; Zhang, Y. Thickness Identification of Tunnel Lining Structure by Time–Energy Density Analysis Based on Wavelet Transform. J. Eng. Sci. Technol. Rev. 2019, 12, 28–37. [Google Scholar] [CrossRef]
- Poncetti, B.L.; Ruiz, D.V.; Futai, M.M. GPR time-energy density analysis with complex wavelets for concrete data analysis. Constr. Build. Mater. 2025, 458, 139694. [Google Scholar] [CrossRef]
- Yu, Q.M.; Zhou, H.L.; Wang, Y.H.; Duan, R.X. Quality monitoring of metro grouting behind segment using ground penetrating radar. Constr. Build. Mater. 2016, 110, 189–200. [Google Scholar] [CrossRef]
- Xie, X.; Liu, Y.; Huang, H.; Du, J.; Zhang, F.; Liu, L. Evaluation of grout behind the lining of shield tunnels using ground-penetrating radar in the Shanghai Metro Line, China. J. Geophys. Eng. 2007, 4, 253. [Google Scholar] [CrossRef]
- Zhang, F.; Xie, X.; Huang, H. Application of ground penetrating radar in grouting evaluation for shield tunnel construction. Tunn. Undergr. Space Technol. 2010, 25, 99–107. [Google Scholar] [CrossRef]
- Peng, M.; Wang, D.; Liu, L.; Shi, Z.; Shen, J.; Ma, F. Recent Advances in the GPR Detection of Grouting Defects behind Shield Tunnel Segments. Remote Sens. 2021, 13, 4596. [Google Scholar] [CrossRef]
- Klewe, T.; Strangfeld, C.; Kruschwitz, S. Review of moisture measurements in civil engineering with ground penetrating radar—Applied methods and signal features. Constr. Build. Mater. 2021, 278, 122250. [Google Scholar] [CrossRef]
- Lalagüe, A.; Lebens, M.A.; Hoff, I.; Grøv, E. Detection of Rockfall on a Tunnel Concrete Lining with Ground-Penetrating Radar (GPR). Rock Mech. Rock Eng. 2016, 49, 2811–2823. [Google Scholar] [CrossRef]
- Abouhamad, M.; Dawood, T.; Jabri, A.; Alsharqawi, M.; Zayed, T. Corrosiveness mapping of bridge decks using image-based analysis of GPR data. Autom. Constr. 2017, 80, 104–117. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wang, L.; Zhang, W.; Yang, X.; Yang, X. Recognition of Rebar in Ground-Penetrating Radar Data for the Second Lining of a Tunnel. Appl. Sci. 2023, 13, 3203. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Fu, G.; He, W.; Hu, D.; Cai, X. Wavelet Packet Analysis of Ground-Penetrating Radar Simulated Signal for Tunnel Cavity Fillings. J. Eng. Sci. Technol. Rev. 2018, 11, 9–17. [Google Scholar] [CrossRef]
- Feng, D.; Wang, X.; Zhang, B. Specific evaluation of tunnel lining multi-defects by all-refined GPR simulation method using hybrid algorithm of FETD and FDTD. Constr. Build. Mater. 2018, 185, 220–229. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Z.; Wang, J.; Cohn, A.G.; Zhang, J.; Jiang, P.; Nie, L.; Sui, Q. Defect segmentation: Mapping tunnel lining internal defects with ground penetrating radar data using a convolutional neural network. Constr. Build. Mater. 2022, 319, 125658. [Google Scholar] [CrossRef]
- Ren, Q.; Wang, Y.; Xu, J. A DL method to detect multi-type hidden objects in tunnel linings using a comprehensive GPR dataset. Measurement 2024, 238, 115379. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, J.; Lei, M.; Yang, S.; Wang, Z. Simultaneous tunnel defects and lining thickness identification based on multi-tasks deep neural network from ground penetrating radar images. Autom. Constr. 2023, 145, 104633. [Google Scholar] [CrossRef]
- Zeng, H.; Wang, J.; Wang, J.F.; Du, Y.; Li, F. Evaluation of steel mesh impact on GPR detection of voids behind lining in railway tunnels. Constr. Build. Mater. 2025, 466, 140316. [Google Scholar] [CrossRef]
- Wang, X.; Liu, H.; Meng, X.; Cui, J.; Du, Y. Enhanced imaging of concealed defects behind concrete linings using Residual Channel attention network for rebar clutter suppression. Autom. Constr. 2024, 166, 105574. [Google Scholar] [CrossRef]
- Hugenschmidt, J.; Kalogeropoulos, A. The inspection of retaining walls using GPR. J. Appl. Geophys. 2009, 67, 335–344. [Google Scholar] [CrossRef]
- Baryshnikov, V.; Khmelin, A.; Denisova, E. GPR Detection of Inhomogeneities in Concrete Lining of Underground Tunnels. J. Min. Sci. 2014, 50, 25–32. [Google Scholar] [CrossRef]
- Alsharqawi, M.; Dawood, T.; Abdelkhalek, S.; Abouhamad, M.; Zayed, T. Condition assessment of concrete-made structures using ground penetrating radar. Autom. Constr. 2022, 144, 104627. [Google Scholar] [CrossRef]
- Han, W.; Jiang, Y.; Wang, G.; Liu, C.; Koga, D.; Luan, H. Review of health inspection and reinforcement design for typical tunnel quality defects of voids and insufficient lining thickness. Tunn. Undergr. Space Technol. 2023, 137, 105110. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, C.; Ye, Y. Principle of a low-frequency transient electromagnetic radar system and its application in the detection of underground pipelines and voids. Tunn. Undergr. Space Technol. 2022, 122, 104392. [Google Scholar] [CrossRef]
- Yu, T.; Zhu, A.; Chen, Y. Efficient Crack Detection Method for Tunnel Lining Surface Cracks Based on Infrared Images. J. Comput. Civ. Eng. 2017, 31, 04016067. [Google Scholar] [CrossRef]
- Shen, B.; Zhang, W.Y.; Qi, D.P.; Wu, X.Y. Wireless Multimedia Sensor Network Based Subway Tunnel Crack Detection Method. Int. J. Distrib. Sens. Netw. 2015, 11, 184639. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Huang, H.; Sun, Y.; Xue, Y.; Wang, F. Inspection equipment study for subway tunnel defects by grey-scale image processing. Adv. Eng. Inform. 2017, 32, 188–201. [Google Scholar] [CrossRef]
- Hsieh, Y.A.; Tsai, Y.J. Machine Learning for Crack Detection: Review and Model Performance Comparison. J. Comput. Civ. Eng. 2020, 34, 04020038. [Google Scholar] [CrossRef]
- Huang, H.W.; Li, Q.T.; Zhang, D.M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel. Tunn. Undergr. Space Technol. 2018, 77, 166–176. [Google Scholar] [CrossRef]
- Futai, M.M.; Machado, L.B.; Santos, R.R.; Poncetti, B.L.; Bittencourt, T.N.; Gamino, A.L. Digital Twins for Condition Assessment of Railway Infrastructures. In Digital Railway Infrastructure; Springer Nature: Cham, Switzerland, 2024; pp. 157–176. [Google Scholar] [CrossRef]
- Paar, G.; Bauer, A.; Kontrus, H. Texture-Based Fusion between Laser Scanner and Camera for Tunnel Surface Documentation. In Proceedings of the 7th International Conference on Optical 3-D Measurement Techniques, Vienna, Austria, 3–5 October 2005. [Google Scholar]
- Haala, N.; Alshawabkeh, Y. Combining Laser Scanning and Photogrammetry—A Hybrid Approach for Heritage Documentation. In Proceedings of the VAST: International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, Nicosia, Cyprus, 30 October–4 November 2006; The Eurographics Association: Eindhoven, The Netherlands, 2006. [Google Scholar] [CrossRef]
- Paar, G.; Mett, M.; Ortner, T.; Kup, D.; Kontrus, H. High-resolution real-time multipurpose tunnel surface 3D rendering. Geomech. Tunn. 2022, 15, 290–297. [Google Scholar] [CrossRef]
- Bauer, A.; Gutjahr, K.; Paar, G.; Kontrus, H.; Glatzl, R. Tunnel Surface 3D Reconstruction from Unoriented Image Sequences. arXiv 2015, arXiv:1505.06237. [Google Scholar]
- David Jenkins, M.; Buggy, T.; Morison, G. An imaging system for visual inspection and structural condition monitoring of railway tunnels. In Proceedings of the 2017 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Milan, Italy, 24–25 July 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Kee, S.H.; Oh, T.; Popovics, J.S.; Arndt, R.W.; Zhu, J. Nondestructive Bridge Deck Testing with Air-Coupled Impact-Echo and Infrared Thermography. J. Bridge Eng. 2012, 17, 928–939. [Google Scholar] [CrossRef]
- Guo, L.; Guo, L.; Zhong, L.; Zhu, Y. Thermal conductivity and heat transfer coefficient of concrete. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2011, 26, 791–796. [Google Scholar] [CrossRef]
- Kim, J.J.; Youm, K.S.; Reda Taha, M.M. Extracting Concrete Thermal Characteristics from Temperature Time History of RC Column Exposed to Standard Fire. Sci. World J. 2014, 2014, 242806. [Google Scholar] [CrossRef] [PubMed]
- Maierhofer, C.; Arndt, R.; Röllig, M.; Rieck, C.; Walther, A.; Scheel, H.; Hillemeier, B. Application of impulse-thermography for non-destructive assessment of concrete structures. Cem. Concr. Compos. 2006, 28, 393–401. [Google Scholar] [CrossRef]
- Ishikawa, M.; Koyama, M.; Kasano, H.; Ogasawara, N.; Yamada, Y.; Hatta, H.; Fukui, R.; Nishitani, Y.; Utsunomiya, S. Inspection of concrete structures using the active thermography method with remote heating apparatuses. In Proceedings of the 15th Asia Pacific Conference for Nondestructive Testing (APCNDT 2017), Singapore, 13–17 November 2017. [Google Scholar]
- Luo, Q.; Gao, B.; Woo, W.; Yang, Y. Temporal and spatial deep learning network for infrared thermal defect detection. NDT E Int. 2019, 108, 102164. [Google Scholar] [CrossRef]
- Kurita, K.; Oyado, M.; Tanaka, H.; Tottori, S. Active infrared thermographic inspection technique for elevated concrete structures using remote heating system. Infrared Phys. Technol. 2009, 52, 208–213. [Google Scholar] [CrossRef]
- Lu, X.; Tian, G.; Wu, J.; Gao, B.; Tian, P. Pulsed Air-Flow Thermography for Natural Crack Detection and Evaluation. IEEE Sens. J. 2020, 20, 8091–8097. [Google Scholar] [CrossRef]
- Milovanović, B.; Banjad Pečur, I. Review of Active IR Thermography for Detection and Characterization of Defects in Reinforced Concrete. J. Imaging 2016, 2, 11. [Google Scholar] [CrossRef]
- Sakagami, T.; Kubo, S. Development of a new non-destructive testing technique for quantitative evaluations of delamination defects in concrete structures based on phase delay measurement using lock-in thermography. Infrared Phys. Technol. 2002, 43, 311–316. [Google Scholar] [CrossRef]
- Edis, E.; Flores-Colen, I.; de Brito, J. Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr. Build. Mater. 2014, 51, 187–197. [Google Scholar] [CrossRef]
- Edis, E.; Flores-Colen, I.; Brito, J. Time-Dependent Passive Building Thermography for Detecting Delamination of Adhered Ceramic Cladding. J. Nondestruct. Eval. 2015, 34, 24. [Google Scholar] [CrossRef]
- Shariq, M.H.; Hughes, B.R. Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art. Renew. Sustain. Energy Rev. 2020, 130, 109979. [Google Scholar] [CrossRef]
- Oh, T.; Kee, S.H.; Arndt, R.W.; Popovics, J.S.; Zhu, J. Comparison of NDT Methods for Assessment of a Concrete Bridge Deck. J. Eng. Mech. 2013, 139, 305–314. [Google Scholar] [CrossRef]
- ASTM D4788-03(2013); Standard Test Method for Detecting Delaminations in Bridge Decks Using Infrared Thermography. ASTM International: West Conshohocken, PA, USA, 2013. [CrossRef]
- Sirca, G.F., Jr.; Adeli, H. Infrared thermography for detecting defects in concrete structures. J. Civ. Eng. Manag. 2018, 24, 508–515. [Google Scholar] [CrossRef]
- Afshani, A.; Kawakami, K.; Konishi, S.; Akagi, H. Study of infrared thermal application for detecting defects within tunnel lining. Tunn. Undergr. Space Technol. 2019, 86, 186–197. [Google Scholar] [CrossRef]
- Han, L.; Chen, J.; Li, H.; Liu, G.; Leng, B.; Ahmed, A.; Zhang, Z. Multispectral water leakage detection based on a one-stage anchor-free modality fusion network for metro tunnels. Autom. Constr. 2022, 140, 104345. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, F.; Shi, L.; Wang, F.; Zeng, P.; Hu, J.; Liu, X.; Xu, Y.; Chen, Q. Automatic seepage detection in cable tunnels using infrared thermography. Meas. Sci. Technol. 2019, 30, 115902. [Google Scholar] [CrossRef]
- Afshani, A.; Akagi, H.; Konishi, S. Thermal analyses of passive infrared thermography application in the tunnel lining with defects. In Proceedings of the ITA—AITES WORLD TUNNEL CONGRESS 2018, Dubai, United Arab Emirates, 21–26 April 2018. [Google Scholar]
- Behbahani, S.S.; Golrokh, A.J.; Hafiz, A.; Wiggenhauser, H.; Tabrizi, K. Utilizing infrared thermography for the condition assessment of tunnel Lining with tiled surface in various temperature conditions. Tunn. Undergr. Space Technol. 2024, 154, 106093. [Google Scholar] [CrossRef]
- Richards, J. Inspection, maintenance and repair of tunnels: International lessons and practice. Tunn. Undergr. Space Technol. 1998, 13, 369–375. [Google Scholar] [CrossRef]
- Huang, H.; Wang, C.; Zhou, M.; Qu, L. Compressive strength detection of tunnel lining using hyperspectral images and machine learning. Tunn. Undergr. Space Technol. 2024, 153, 105979. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Wang, S.; Metaxas, D.N. Multispectral Deep Neural Networks for Pedestrian Detection. arXiv 2016, arXiv:1611.02644. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Song, D.; Tong, R.; Tang, M. Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Pattern Recognit. 2019, 85, 161–171. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, W.; Huang, L.; Vimarlund, V.; Wang, Z. Applications of terrestrial laser scanning for tunnels: A review. J. Traffic Transp. Eng. Engl. Ed. 2014, 1, 325–337. [Google Scholar] [CrossRef]
- Fekete, S.; Diederichs, M.; Lato, M. Geotechnical and operational applications for 3-dimensional laser scanning in drill and blast tunnels. Tunn. Undergr. Space Technol. 2010, 25, 614–628. [Google Scholar] [CrossRef]
- Kim, Y.; Bruland, A. Analysis and Evaluation of Tunnel Contour Quality Index. Autom. Constr. 2019, 99, 223–237. [Google Scholar] [CrossRef]
- Shen, N.; Wang, B.; Ma, H.; Zhao, X.; Zhou, Y.; Zhang, Z.; Xu, J. A review of terrestrial laser scanning (TLS)-based technologies for deformation monitoring in engineering. Measurement 2023, 223, 113684. [Google Scholar] [CrossRef]
- Xie, X.; Lu, X. Development of a 3D modeling algorithm for tunnel deformation monitoring based on terrestrial laser scanning. Undergr. Space 2017, 2, 16–29. [Google Scholar] [CrossRef]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures. Surv. Rev. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Han, J.Y.; Guo, J.; Jiang, Y.S. Monitoring tunnel profile by means of multi-epoch dispersed 3-D LiDAR point clouds. Tunn. Undergr. Space Technol. 2013, 33, 186–192. [Google Scholar] [CrossRef]
- Xu, T.; Xu, L.; Li, X.; Yao, J. Detection of Water Leakage in Underground Tunnels Using Corrected Intensity Data and 3D Point Cloud of Terrestrial Laser Scanning. IEEE Access 2018, 6, 32471–32480. [Google Scholar] [CrossRef]
- Cheng, X.; Hu, X.; Tan, K.; Wang, L.; Yang, L. Automatic Detection of Shield Tunnel Leakages Based on Terrestrial Mobile LiDAR Intensity Images Using Deep Learning. IEEE Access 2021, 9, 55300–55310. [Google Scholar] [CrossRef]
- Tan, K.; Cheng, X.; Ju, Q.; Wu, S. Correction of Mobile TLS Intensity Data for Water Leakage Spots Detection in Metro Tunnels. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1711–1715. [Google Scholar] [CrossRef]
- Huang, H.; Cheng, W.; Zhou, M.; Chen, J.; Zhao, S. Towards Automated 3D Inspection of Water Leakages in Shield Tunnel Linings Using Mobile Laser Scanning Data. Sensors 2020, 20, 6669. [Google Scholar] [CrossRef]
- Hawley, C.; Gräbe, P. Water leakage mapping in concrete railway tunnels using LiDAR generated point clouds. Constr. Build. Mater. 2022, 361, 129644. [Google Scholar] [CrossRef]
- Turkan, Y.; Hong, J.; Laflamme, S.; Puri, N. Adaptive wavelet neural network for terrestrial laser scanner-based crack detection. Autom. Constr. 2018, 94, 191–202. [Google Scholar] [CrossRef]
- Oytun, M.; Atasoy, G. Effect of Terrestrial Laser Scanning (TLS) parameters on the accuracy of crack measurement in building materials. Autom. Constr. 2022, 144, 104590. [Google Scholar] [CrossRef]
- Yang, H.; Xu, X. Structure monitoring and deformation analysis of tunnel structure. Compos. Struct. 2021, 276, 114565. [Google Scholar] [CrossRef]
- Xu, X.; Yang, H. Intelligent crack extraction and analysis for tunnel structures with terrestrial laser scanning measurement. Adv. Mech. Eng. 2019, 11, 1687814019872650. [Google Scholar] [CrossRef]
- Yasuda, N.; Misaki, N.; Shimada, Y.; Kotyaev, O. Applicability of non-contact inspection using laser ablation-induced vibration in a reinforced concrete tunnel lining. Tunn. Undergr. Space Technol. 2021, 113, 103977. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sugimoto, T.; Morioka, H.; Utagawa, N.; Kuroda, C.; Ohdaira, T. Detection and acoustical visualization of internal defects in shotcrete structures by spatial spectral entropy for noncontact acoustic inspection method. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 2099–2102. [Google Scholar] [CrossRef]
- Sugimoto, K.; Akamatsu, R.; Sugimoto, T.; Utagawa, N.; Kuroda, C.; Katakura, K. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy. Jpn. J. Appl. Phys. 2015, 54, 07HC15. [Google Scholar] [CrossRef]
- Akamatsu, R.; Sugimoto, T.; Utagawa, N.; Katakura, K. Study on non contact acoustic imaging method for concrete defect detection. In Proceedings of the 2012 IEEE International Ultrasonics Symposium, Dresden, Germany, 7–10 October 2012; pp. 252–256. [Google Scholar] [CrossRef]
- Akamatsu, R.; Utagawa, N.; Sugimoto, T.; Katakura, K. Study on non contact acoustic imaging method for concrete structures. In Proceedings of the 2013 IEEE International Ultrasonics Symposium (IUS), Flagship Prague, Czech Republic, 21–25 July 2013; pp. 1303–1306. [Google Scholar] [CrossRef]
- Katakura, K.; Akamatsu, R.; Sugimoto, T.; Utagawa, N. Study on detectable size and depth of defects in noncontact acoustic inspection method. Jpn. J. Appl. Phys. 2014, 53, 07KC15. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sugimoto, T. Detection of Internal Defects in Concrete and Evaluation of a Healthy Part of Concrete by Noncontact Acoustic Inspection Using Normalized Spectral Entropy and Normalized SSE. Entropy 2022, 24, 142. [Google Scholar] [CrossRef]
- Sugimoto, K.; Sugimoto, T. Detection and visualization of internal defects in shotcrete specimens using SSE analysis considering local noise for noncontact acoustic inspection. In Proceedings of the 2022 IEEE International Ultrasonics Symposium (IUS), Venice, Italy, 10–13 October 2022. [Google Scholar] [CrossRef]
- Yasuda, N.; Misaki, N.; Shimada, Y.; Yamaoka, D. Detection and characteristics estimation of defects in concrete structures using laser ablation-induced vibration. Tunn. Undergr. Space Technol. 2020, 103, 103460. [Google Scholar] [CrossRef]
- Wakata, S.; Hosoya, N.; Hasegawa, N.; Nishikino, M. Defect detection of concrete in infrastructure based on Rayleigh wave propagation generated by laser-induced plasma shock waves. Int. J. Mech. Sci. 2022, 218, 107039. [Google Scholar] [CrossRef]
- Jing, G.; Qin, X.; Wang, H.; Deng, C. Developments, challenges, and perspectives of railway inspection robots. Autom. Constr. 2022, 138, 104242. [Google Scholar] [CrossRef]
- Attard, L.; Debono, C.J.; Valentino, G.; Di Castro, M. Vision-based change detection for inspection of tunnel liners. Autom. Constr. 2018, 91, 142–154. [Google Scholar] [CrossRef]
- Li, D.; Xie, Q.; Gong, X.; Yu, Z.; Xu, J.; Sun, Y.; Wang, J. Automatic defect detection of metro tunnel surfaces using a vision-based inspection system. Adv. Eng. Inform. 2021, 47, 101206. [Google Scholar] [CrossRef]
- Shi, B.; Yang, M.; Liu, J.; Han, B.; Zhao, K. Rail transit shield tunnel deformation detection method based on cloth simulation filtering with point cloud cylindrical projection. Tunn. Undergr. Space Technol. 2023, 135, 105031. [Google Scholar] [CrossRef]
- Yu, S.N.; Jang, J.H.; Han, C.S. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Autom. Constr. 2007, 16, 255–261. [Google Scholar] [CrossRef]
- Victores, J.; Martínez, S.; Jardón, A.; Balaguer, C. Robot-aided tunnel inspection and maintenance system by vision and proximity sensor integration. Autom. Constr. 2011, 20, 629–636. [Google Scholar] [CrossRef]
- Menendez, E.; Victores, J.G.; Montero, R.; Martínez, S.; Balaguer, C. Tunnel structural inspection and assessment using an autonomous robotic system. Autom. Constr. 2018, 87, 117–126. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, X.; Taniguchi, T. Quantitative condition inspection and assessment of tunnel lining. Autom. Constr. 2019, 102, 258–269. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, D.M.; Huang, H.W. Deep learning–based image instance segmentation for moisture marks of shield tunnel lining. Tunn. Undergr. Space Technol. 2020, 95, 103156. [Google Scholar] [CrossRef]
TOMIE Manual | CETU (2015) | NZTA | ADIF | CS450/CS452 |
---|---|---|---|---|
Initial inspection (before opening for operation) | Continuous inspection | Routine surveillance inspection (daily by the staff) | Basic inspection (visual) | Superficial inspection (continuous) |
Routine inspection (every 2 years, possibility of 4 years) | Routine inspection (annually) | General inspection (every 2 years) | Principal inspection (after any observation in the basic inspection) | General inspection (visual, annually) |
In-depth inspection (for complex tunnels; frequency defined by the manager) | Detailed inspection (every 6 years) | Principal inspection (more detailed, every 6 years) | Principal inspection and acceptance (more complete inspection, it cannot exceed a three-year interval) | |
Damage inspection (after special events) | Special inspection (after a specific event or defect) | Special inspection (after a specific event or defect) | Special inspection to investigate a specific defect | |
Special inspection to investigate specific defect | Higher-risk tunnels may have higher frequencies |
Applications | GPR | Ultrasonic Tomograph | IRT | Impact-Echo | Multispectral | Laser Vibrometer | TER | Photogrammetry | Laser Scanner | |
---|---|---|---|---|---|---|---|---|---|---|
Inspection Type | Cadastral | o | o | o | o | o | o | o | o | o |
Routine | o | o | o | • | o | o | o | |||
Special | o | o | o | o | o | o | o | |||
Surface | o | o | o | o | ||||||
Interior | o | o | o | o | o | o | ||||
Element Estimation | Layer thickness | o | o | o | o | |||||
Steel rebar | o | o | ||||||||
Grouting evaluation | o | o | o | o | ||||||
Shotcrete bonding | • | o | o | o | o | |||||
Surface geometry | o | o | o | |||||||
Volume reconstruction | o | o | • | |||||||
Pathologies | Concrete state | o | o | • | o | o | o | |||
Rebar corrosion | o | • | • | • | • | |||||
Void localization | o | o | o | o | o | o | ||||
Water leakage | o | o | o | o | o | |||||
Detachment | o | o | o | o | o | o | • | • | ||
Cracks | • | o | o | o | o | o | • | |||
Small crack | • | o | o | |||||||
Displacement | o | o |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poncetti, B.L.; Ruiz, D.V.; Assis, L.S.d.; Machado, L.B.; Silva, T.B.d.; Akinlalu, A.A.; Futai, M.M. Tunnel Inspection Review: Normative Practices and Non-Destructive Method Advancements for Tunnels with Concrete Cover. Appl. Mech. 2025, 6, 41. https://doi.org/10.3390/applmech6020041
Poncetti BL, Ruiz DV, Assis LSd, Machado LB, Silva TBd, Akinlalu AA, Futai MM. Tunnel Inspection Review: Normative Practices and Non-Destructive Method Advancements for Tunnels with Concrete Cover. Applied Mechanics. 2025; 6(2):41. https://doi.org/10.3390/applmech6020041
Chicago/Turabian StylePoncetti, Bernardo Lopes, Dianelys Vega Ruiz, Leandro Silva de Assis, Lucas Bellini Machado, Tiago Borges da Silva, Ayokunle Adewale Akinlalu, and Marcos Massao Futai. 2025. "Tunnel Inspection Review: Normative Practices and Non-Destructive Method Advancements for Tunnels with Concrete Cover" Applied Mechanics 6, no. 2: 41. https://doi.org/10.3390/applmech6020041
APA StylePoncetti, B. L., Ruiz, D. V., Assis, L. S. d., Machado, L. B., Silva, T. B. d., Akinlalu, A. A., & Futai, M. M. (2025). Tunnel Inspection Review: Normative Practices and Non-Destructive Method Advancements for Tunnels with Concrete Cover. Applied Mechanics, 6(2), 41. https://doi.org/10.3390/applmech6020041