A Brief Review of Selected Biomechanical Variables for Sport Performance Monitoring and Training Optimization
Abstract
:1. Introduction
2. Eccentric Utilization Ratio
3. Reactive Strength Index
4. Bilateral Deficit
5. Force–Velocity Relationship
6. Conclusions and Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sattler, T.; Sekulić, D.; Spasić, M.; Perić, M.; Krolo, A.; Uljević, O.; Kondrič, M. Analysis of the Association between Motor and Anthropometric Variables with Change of Direction Speed and Reactive Agility Performance. J. Hum. Kinet. 2015, 47, 137–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rønnestad, B.R.; Mujika, I. Optimizing strength training for running and cycling endurance performance: A review. Scand. J. Med. Sci. Sports 2014, 24, 603–612. [Google Scholar] [CrossRef] [PubMed]
- De Hoyo, M.; Gonzalo-Skok, O.; Sanudo, B.; Carrascal, C.; Plaza-Armas, J.R.; Camacho-Candil, F.; Otero-Esquina, C. Comparative effects of in-season full-back squat, resisted sprint training, and plyometric training on explosive performance in U-19 elite soccer players. J. Strength Cond. Res. 2016, 30, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Myer, G.D. Resistance training among young athletes: Safety, efficacy and injury prevention effects. Br. J. Sports Med. 2010, 44, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Wilson, G.J.; Murphy, A.J. The use of isometric tests of muscular function in athletic assessment. Sports Med. 1996, 22, 19–37. [Google Scholar] [CrossRef]
- Althorpe, T.; Beales, D.; Skinner, A.; Caputi, N.; Mullings, G.; Stockden, M.; Boyle, J. Isometric hip strength and strength ratios in elite adolescent and senior Australian Rules Football players: An initial exploration using fixed-point dynamometry. J. Sci. Med. Sport 2018, 21, S81. [Google Scholar] [CrossRef]
- Lee, J.W.Y.; Mok, K.M.; Chan, H.C.K.; Yung, P.S.H.; Chan, K.M. Eccentric hamstring strength deficit and poor hamstring-to-quadriceps ratio are risk factors for hamstring strain injury in football: A prospective study of 146 professional players. J. Sci. Med. Sport 2018, 21, 789–793. [Google Scholar] [CrossRef]
- Markou, S.; Vagenas, G. Multivariate isokinetic asymmetry of the knee and shoulder in elite volleyball players. Eur. J. Sport Sci. 2006, 6, 71–80. [Google Scholar] [CrossRef]
- Czaplicki, A.; Jarocka, M.; Walawski, J. Isokinetic identification of knee joint torques before and after anterior cruciate ligament reconstruction. PLoS ONE 2015, 10, e0144283. [Google Scholar] [CrossRef] [Green Version]
- Levinger, I.; Goodman, C.; Hare, D.L.; Jerums, G.; Toia, D.; Selig, S. The reliability of the 1RM strength test for untrained middle-aged individuals. J. Sci. Med. Sport 2009, 12, 310–316. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Jukic, I.; García-Ramos, A. Validation of a novel method to assess maximal neuromuscular capacities through the load-velocity relationship. J. Biomech. 2021, 127, 110684. [Google Scholar] [CrossRef] [PubMed]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMaster, D.T.; Gill, N.; Cronin, J.; McGuigan, M. A brief review of strength and ballistic assessment methodologies in sport. Sports Med. 2014, 44, 603–623. [Google Scholar] [CrossRef] [PubMed]
- Cronin, J.B.; Hing, R.D.; McNair, P.J. Reliability and validity of a linear position transducer for measuring jump performance. J. Strength Cond. Res. 2004, 18, 590–593. [Google Scholar] [CrossRef]
- Moir, G.; Sanders, R.; Button, C.; Glaister, M. The influence of familiarization on the reliability of force variables measured during unloaded and loaded vertical jumps. J. Strength Cond. Res. 2005, 19, 140–145. [Google Scholar] [CrossRef]
- McElveen, M.T.; Riemann, B.L.; Davies, G.J. Bilateral comparison of propulsion mechanics during single-leg vertical jumping. J. Strength Cond. Res. 2010, 24, 375–381. [Google Scholar] [CrossRef]
- Emmonds, S.; Nicholson, G.; Begg, C.; Jones, B.; Bissas, A. Importance of physical qualities for speed and change of direction ability in elite female soccer players. J. Strength Cond. Res. 2019, 33, 1669–1677. [Google Scholar] [CrossRef]
- Köklü, Y.; Alemdaroğlu, U.; Özkan, A.; Koz, M.; Ersöz, G. The relationship between sprint ability, agility and vertical jump performance in young soccer players. Sci. Sports 2015, 30, e1–e5. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Ripley, N.J.; Comfort, P. Vertical jump testing in rugby league: A rationale for calculating take-off momentum. J. Appl. Biomech. 2020, 36, 370–374. [Google Scholar] [CrossRef]
- Northeast, J.; Russell, M.; Shearer, D.; Cook, C.J.; Kilduff, L.P. Predictors of linear and multidirectional acceleration in elite soccer players. J. Strength Cond. Res. 2019, 33, 514–522. [Google Scholar] [CrossRef] [Green Version]
- Brumitt, J.; Heiderscheit, B.C.; Manske, R.C.; Niemuth, P.E.; Mattocks, A.; Rauh, M.J. Preseason functional test scores are associated with future sports injury in female collegiate athletes. J. Strength Cond. Res. 2018, 32, 1692–1701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewit, J.K.; Cronin, J.B.; Hume, P.A. Asymmetry in multi-directional jumping tasks. Phys. Ther. Sport 2012, 13, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Rampinini, E.; Maffiuletti, N.; Marcora, S.M. A vertical jump force test for assessing bilateral strength asymmetry in athletes. Med. Sci. Sports Exerc. 2007, 39, 2044–2050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haugen, T.A.; Tønnessen, E.; Hisdal, J.; Seiler, S. The role and development of sprinting speed in soccer. Int. J. Sports Physiol. Perform. 2014, 9, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef]
- Petrakos, G.; Morin, J.B.; Egan, B. Resisted Sled Sprint Training to Improve Sprint Performance: A Systematic Review. Sports Med. 2016, 46, 381–400. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P. Interpreting power-force-velocity profiles for individualized and specific training. Int. J. Sports Physiol. Perform. 2016, 11, 267–272. [Google Scholar] [CrossRef]
- Kawamori, N.; Newton, R.U.; Hori, N.; Nosaka, K. Effects of weighted sled towing with heavy versus light load on sprint acceleration ability. J. Strength Cond. Res. 2014, 28, 2738–2745. [Google Scholar] [CrossRef]
- Baena-Raya, A.; Soriano-Maldonado, A.; Conceição, F.; Jiménez-Reyes, P.; Rodríguez-Pérez, M.A. Association of the vertical and horizontal force-velocity profile and acceleration with change of direction ability in various sports. Eur. J. Sport Sci. 2020, 21, 1659–1667. [Google Scholar] [CrossRef]
- Liu, G.C.; Huang, G.C.; Huang, C. Effects of different approach lengths of the last stride on volleyballer run up vertical jump. In Proceedings of the 19 International Symposium on Biomechanics in Sports, San Francisco, CA, USA, 3 February 2001; pp. 120–123. [Google Scholar]
- Nimphius, S.; Callaghan, S.J.; Spiteri, T.; Lockie, R.G. Change of Direction Deficit: A More Isolated Measure of Change of Direction Performance Than Total 505 Time. J. Strength Cond. Res. 2016, 30, 3024–3032. [Google Scholar] [CrossRef]
- Harman, E.A.; Rosenstein, M.T.; Frykman, P.N.; Rosenstein, R.M.; Kraemer, W.J. Estimation of Human Power Output from Vertical Jump. J. Strength Cond. Res. 1991, 5, 116. [Google Scholar] [CrossRef]
- Van Hooren, B.; Zolotarjova, J. The Difference between Countermovement and Squat Jump Performances: A Review of Underlying Mechanisms with Practical Applications. J. Strength Cond. Res. 2017, 31, 2011–2020. [Google Scholar] [CrossRef] [Green Version]
- McGuigan, M.; Doyle, T.; Newton, M.; Edwards, D.; Nimphius, S.; Newton, R.U. Eccentric utilization ratio: Effect of sport and phase of training. J. Strength Cond. Res. 2006, 20, 992–995. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.; Ruben, R.; Molinari, M.; Painter, K.; Ramsey, M.W.; Stone, M.E.; Stone, M.H. The Relationship between the Eccentric Utilization Ratio, Reactive Strength, and Pre-Stretch Augmentation and Selected Dynamic and Isometric Muscle Actions. J. Strength Cond. Res. 2010, 24, 1. [Google Scholar] [CrossRef]
- Komi, P.V.; Bosco, C. Utilization of stored elastic energy in leg extensor muscles by men and women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar] [PubMed]
- Bobbert, M.F.; Casius, L.J.R. Is the effect of a countermovement on jump height due to active state development? Med. Sci. Sports Exerc. 2005, 37, 440–446. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Gerritsen, K.G.M.; Litjens, M.C.A.; Van Soest, A.J. Why is countermovement jump height greater than squat jump height? Med. Sci. Sports Exerc. 1996, 28, 1402–1412. [Google Scholar] [CrossRef]
- Mclellan, C.P.; Lovell, D.I.; Gass, G.C. The role of rate of force development on vertical jump performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Van Hooren, B.; Bosch, F. Influence of muscle slack on high-intensity sport performance: A review. Strength Cond. J. 2016, 38, 75–87. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Žitnik, J.; Smajla, D.; Šarabon, N. The difference between squat jump and countermovement jump in 770 male and female participants from different sports. Eur. J. Sport Sci. 2021, 1–9. [Google Scholar] [CrossRef]
- Grosprêtre, S.; Lepers, R. Performance characteristics of Parkour practitioners: Who are the traceurs? Eur. J. Sport Sci. 2016, 16, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Gehri, D.J.; Ricard, M.D.; Kleiner, D.M.; Kirkendall, D.T. A Comparison of Plyometric Training Techniques for Improving Vertical Jump Ability and Energy Production. J. Strength Cond. Res. 1998, 12, 85. [Google Scholar] [CrossRef]
- Hawkins, S.B.; Doyle, T.L.A.; McGuigan, M.R. The effect of different training programs on eccentric energy utilization in college-aged males. J. Strength Cond. Res. 2009, 23, 1996–2002. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Pleša, J.; Šarabon, N. Questionable utility of the eccentric utilization ratio in relation to the performance of volleyball players. Int. J. Environ. Res. Public Health 2021, 18, 11754. [Google Scholar] [CrossRef] [PubMed]
- Tufano, J.J.; Walker, S.; Seitz, L.B.; Newton, R.U.; Häkkinen, K.; Blazevich, A.J.; Haff, G.G. Reliability of the reactive strength index, eccentric utilisation ratio, and pre-stretch augmentation in untrained, novice jumpers. J. Aust. Strength Cond. 2013, 21, 31–33. [Google Scholar]
- Young, W.B. Laboratory strength assessment of athletes. New Stud. Athl. 1995, 10, 89–96. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef]
- Zatsiorsky, V.M.; Kraemer, W.J. Science and Practice of Strength Training; Human Kinetics: Champaign, IL, USA, 2007. [Google Scholar]
- Flanagan, E.P.; Ebben, W.P.; Jensen, R.L. Reliability of the reactive strength index and time to stabilization during depth jumps. J. Strength Cond. Res. 2008, 22, 1677–1682. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [Green Version]
- Ebben, W.P.; Petushek, E.J. Using the reactive strength index modified to evaluate plyometric performance. J. Strength Cond. Res. 2010, 24, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Sole, C.J.; Bailey, C.A.; Grazer, J.L.; Beckham, G.K. A Comparison of Reactive Strength Index-Modified Between Six, U.S. Collegiate Athletic Teams. J. Strength Cond. Res. 2015, 29, 1310–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidtbleicher, D. Training for power events. In The Encyclopedia of Sports Medicine; Komi, P.V., Ed.; Wiley Online Library: Oxford, UK, 1992; pp. 169–179. [Google Scholar]
- Bosco, C. Strength Assessment with the Bosco’s Test; Italian Society of Sport Science: Rome, Italy, 1999; pp. 5–165. [Google Scholar]
- Maloney, S.J.; Richards, J.; Nixon, D.G.D.; Harvey, L.J.; Fletcher, I.M. Vertical stiffness asymmetries during drop jumping are related to ankle stiffness asymmetries. Scand. J. Med. Sci. Sports 2017, 27, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsiokanos, A.; Kellis, E.; Jamurtas, A.; Kellis, S. The relationship between jumping performance and isokinetic strength of hip and knee extensors and ankle plantar flexors. Isokinet. Exerc. Sci. 2002, 10, 107–115. [Google Scholar] [CrossRef]
- Byrne, D.J.; Browne, D.T.; Byrne, P.J.; Richardson, N. Interday Reliability of the Reactive Strength Index and Optimal Drop Height. J. Strength Cond. Res. 2017, 31, 721–726. [Google Scholar] [CrossRef]
- Suchomel, T.J.; Bailey, C.A.; Sole, C.J.; Grazer, J.L.; Beckham, G.K. Using reactive strength index-modified as an explosive performance measurement tool in division i athletes. J. Strength Cond. Res. 2015, 29, 899–904. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.; Turner, A.N.; Read, P.; Bishop, C. Reactive Strength Index and its Associations to Measure of Physical and Sports Performance: A Systematic Review with Meta-Analysis. Sports Med. 2021. In press. [Google Scholar] [CrossRef]
- Harper, D.J.; Jordan, A.R.; Kiely, J. Relationships Between Eccentric and Concentric Knee Strength Capacities and Maximal Linear Deceleration Ability in Male Academy Soccer Players. J. Strength Cond. Res. 2021, 35, 465–472. [Google Scholar] [CrossRef]
- Brumitt, J.; Dorociak, R.; Dunn, S.; Critchfield, C.; Benner, J.; Cuddeford, T. Lower preseason reactive strength index scores are associated with injury in female collegiate volleyball players but not male collegiate basketball players. J. Sci. Med. Sport 2021, 24, 549–554. [Google Scholar] [CrossRef]
- Potach, D.H.; Chu, D.A. Plyometric training. In Essentials of Strength Training and Conditioning; Earle, R.W., Beachle, T.R., Eds.; Human Kinetics Publishers Inc.: Champaign, IL, USA, 2000; pp. 427–470. [Google Scholar]
- Dobbs, C.W.; Gill, N.D.; Smart, D.J.; McGuigan, M.R. Relationship between vertical and horizontal jump variables and muscular performance in athletes. J. Strength Cond. Res. 2015, 29, 661–671. [Google Scholar] [CrossRef]
- Kipp, K.; Kiely, M.T.; Geiser, C.F. Reactive strength index modified is a valid measure of explosiveness in collegiate female volleyball players. J. Strength Cond. Res. 2016, 30, 1341–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petway, A.J.; Freitas, T.T.; Calleja-González, J.; Alcaraz, P.E. Match day-1 reactive strength index and in-game peak speed in collegiate division I basketball. Int. J. Environ. Res. Public Health 2021, 18, 3259. [Google Scholar] [CrossRef] [PubMed]
- Howard, J.D.; Enoka, R.M. Maximum bilateral contractions are modified by neurally mediated interlimb effects. J. Appl. Physiol. 1991, 70, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Škarabot, J.; Cronin, N.; Strojnik, V.; Avela, J. Bilateral deficit in maximal force production. Eur. J. Appl. Physiol. 2016, 116, 2057–2084. [Google Scholar] [CrossRef]
- Samozino, P.; Rejc, E.; Di Prampero, P.E.; Belli, A.; Morin, J.B. Force-velocity properties’ contribution to bilateral deficit during ballistic push-off. Med. Sci. Sports Exerc. 2014, 46, 107–114. [Google Scholar] [CrossRef]
- Jakobi, J.M.; Chilibeck, P.D. Bilateral and unilateral contractions: Possible differences in maximal voluntary force. Can. J. Appl. Physiol. 2001, 26, 12–33. [Google Scholar] [CrossRef]
- Bobbert, M.F.; De Graaf, W.W.; Jonk, J.N.; Casius, L.J.R. Explanation of the bilateral deficit in human vertical squat jumping. J. Appl. Physiol. 2006, 100, 493–499. [Google Scholar] [CrossRef]
- Bračič, M.; Supej, M.; Peharec, S.; Bačićl, P.; Čoh, M. An investigation of the influence of bilateral deficit on the counter-movement jump performance in elite sprinters. Kinesiology 2010, 42, 73–81. [Google Scholar]
- Botton, C.E.; Radaelli, R.; Wilhelm, E.N.; Rech, A.; Brown, L.E.; Pinto, R.S. Neuromuscular adaptations to Unilateral vs. Bilateral strength training in women. J. Strength Cond. Res. 2016, 30, 1924–1932. [Google Scholar] [CrossRef]
- Taniguchi, Y. Lateral specificity in resistance training: The effect of bilateral and unilateral training. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 144–150. [Google Scholar] [CrossRef]
- Taniguchi, Y. Relationship between the modifications of bilateral deficit in upper and lower limbs by resistance training in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Ascenzi, G.; Ruscello, B.; Filetti, C.; Bonanno, D.; Di Salvo, V.; Nuñez, F.J.; Mendez-Villanueva, A.; Suarez-Arrones, L. Bilateral Deficit and Bilateral Performance: Relationship with Sprinting and Change of Direction in Elite Youth Soccer Players. Sports 2020, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Berney, J.; Lake, J.; Loturco, I.; Blagrove, R.; Turner, A.; Read, P. The Bilateral Deficit during Jumping Tasks: Relationship with Speed and Change of Direction Speed Performance. J. Strength Cond. Res. 2021, 35, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Šarabon, N. Bilateral deficit in countermovement jump and its association with change of direction performance in basketball and tennis players. Sports Biomech. 2021, 1–14. [Google Scholar] [CrossRef]
- Nicholson, G.; Masini, D. Bilateral deficit: Relationships with training history and functional performance. Kinesiology 2021, 53, 86–94. [Google Scholar] [CrossRef]
- Bračič, M.; Erčulj, F. Bilateralni indeks pri skoku z nasprotnim gibanjem pri mladih košarkarjih. Rev. Šport 2010, 58, 67–72. [Google Scholar]
- Goldberg, A.L.; Etlinger, J.D.; Goldspink, D.F.; Jablecki, C. Mechanism of work-induced hypertrophy of skeletal muscle. Med. Sci. Sports Exerc. 1975, 7, 185–198. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Brughelli, M.; Morin, J.B. Effectiveness of an individualized training based on force-velocity profiling during jumping. Front. Physiol. 2017, 7, 677. [Google Scholar] [CrossRef] [Green Version]
- Jaric, S. Force-velocity Relationship of Muscles Performing Multi-joint Maximum Performance Tasks. Int. J. Sports Med. 2015, 36, 699–704. [Google Scholar] [CrossRef]
- Hill, V.A. The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B Biol. Sci. 1937, 205, 211–230. [Google Scholar]
- Bobbert, M.F. Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? J. Appl. Physiol. 2012, 112, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Reyes, P.; Samozino, P.; Pareja-Blanco, F.; Conceição, F.; Cuadrado-Peñafiel, V.; González-Badillo, J.J.; Morin, J.B. Validity of a simple method for measuring force-velocity-power profile in countermovement jump. Int. J. Sports Physiol. Perform. 2017, 12, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Rabita, G.; Dorel, S.; Slawinski, J.; Peyrot, N.; Saez de Villarreal, E.; Morin, J.B. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand. J. Med. Sci. Sports 2016, 26, 648–658. [Google Scholar] [CrossRef] [PubMed]
- Baena-Raya, A.; Soriano-Maldonado, A.; Rodríguez-Pérez, M.A.; García-De-Alcaraz, A.; Ortega-Becerra, M.; Jiménez-Reyes, P.; García-Ramos, A. The force-velocity profile as determinant of spike and serve ball speed in top-level male volleyball players. PLoS ONE 2021, 16, e0249612. [Google Scholar] [CrossRef]
- Lindberg, K.; Solberg, P.; Rønnestad, B.R.; Frank, M.T.; Larsen, T.; Abusdal, G.; Berntsen, S.; Paulsen, G.; Sveen, O.; Seynnes, O.; et al. Should we individualize training based on force-velocity profiling to improve physical performance in athletes? Scand. J. Med. Sci. Sports 2021, 31, 2198–2210. [Google Scholar] [CrossRef]
- Broussal, A.; Delacourt, L.; Samozino, P.; Morin, J.-B. Jump performance and force-velocity profiling in high-level volleyball players: A pilot study. In Proceedings of the 21st Annual Congress of the European College of Sport Science, Vienna, Austria, 6–9 July 2016; pp. 1–2. [Google Scholar]
- Marcote-Pequeño, R.; García-Ramos, A.; Cuadrado-Peñafiel, V.; González-Hernández, J.M.; Gómez, M.Á.; Jiménez-Reyes, P. Association Between the Force–Velocity Profile and Performance Variables Obtained in Jumping and Sprinting in Elite Female Soccer Players. Int. J. Sports Physiol. Perform. 2019, 14, 209–215. [Google Scholar] [CrossRef]
- Morin, J.B.; Edouard, P.; Samozino, P. Technical ability of force application as a determinant factor of sprint performance. Med. Sci. Sports Exerc. 2011, 43, 1680–1688. [Google Scholar] [CrossRef]
- Haugen, T.A.; Breitschädel, F.; Seiler, S. Sprint mechanical variables in elite athletes: Are force-velocity profiles sport specific or individual? PLoS ONE 2019, 14, e0215551. [Google Scholar] [CrossRef]
- Slawinski, J.; Termoz, N.; Rabita, G.; Guilhem, G.; Dorel, S.; Morin, J.B.; Samozino, P. How 100-m event analyses improve our understanding of world-class men’s and women’s sprint performance. Scand. J. Med. Sci. Sports 2017, 27, 45–54. [Google Scholar] [CrossRef]
- Rabita, G.; Dorel, S.; Slawinski, J.; Sàez-de-Villarreal, E.; Couturier, A.; Samozino, P.; Morin, J.B. Sprint mechanics in world-class athletes: A new insight into the limits of human locomotion. Scand. J. Med. Sci. Sports 2015, 25, 583–594. [Google Scholar] [CrossRef]
- Jiménez-Reyes, P.; Samozino, P.; Morin, J.B. Optimized training for jumping performance using the force-velocity imbalance: Individual adaptation kinetics. PLoS ONE 2019, 14, e0216681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samozino, P.; Rejc, E.; Di Pampero, P.E.; Belli, A.; Morin, J.B. Optimal Force–Velocity Profile in Ballistic Movements—Altius. Med. Sci. Sports Exerc. 2012, 44, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Samozino, P.; Peyrot, N.; Edouard, P.; Nagahara, R.; Jimenez-Reyes, P.; Vanwanseele, B.; Morin, J.B. Optimal mechanical force-velocity profile for sprint acceleration performance. Scand. J. Med. Sci. Sport. 2021. [Google Scholar] [CrossRef] [PubMed]
- Pleša, J.; Kozinc, Ž.; Šarabon, N. The Association Between Force-Velocity Relationship in Countermovement Jump and Sprint With Approach Jump, Linear Acceleration and Change of Direction Ability in Volleyball Players. Front. Physiol. 2021, 12, 763711. [Google Scholar] [CrossRef]
- Balsalobre-Fernández, C.; Glaister, M.; Lockey, R.A. The validity and reliability of an iPhone app for measuring vertical jump performance. J. Sports Sci. 2015, 33, 1574–1579. [Google Scholar] [CrossRef]
- Haynes, T.; Bishop, C.; Antrobus, M.; Brazier, J. The validity and reliability of the My Jump 2 app for measuring the reactive strength index and drop jump performance. J. Sports Med. Phys. Fitness 2019, 59, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Randell, A.D.; Cronin, J.B.; Keogh, J.W.L.; Gill, N.D. Transference of strength and power adaptation to sports performance-horizontal and vertical force production. Strength Cond. J. 2010, 32, 100–106. [Google Scholar] [CrossRef]
- Contreras, B.; Vigotsky, A.D.; Schoenfeld, B.J.; Beardsley, C.; McMaster, D.T.; Reyneke, J.H.T.; Cronin, J.B. Effects of a Six-Week Hip Thrust vs. Front Squat Resistance Training Program on Performance in Adolescent Males: A Randomized Controlled Trial. J. Strength Cond. Res. 2017, 31, 999–1008. [Google Scholar] [CrossRef]
Variable | Calculation | Typical Values | Equipment | Practical Application |
---|---|---|---|---|
EUR | CMJ/SJ | 1.05–1.15 | Force plate, jump mat, smart phone app, optical sensor (optojump), inertial measurement unit (IMU) | EUR is probably not suitable to be interpreted as good or bad in isolation. The relevance of EUR should be determined in the context of the specific sport. Thus, general recommendations for training decisions cannot be given based on the value of the EUR. |
RSI | RSI = Jump height/contact time RSImod = Jump height/time to take off | RSI = 1.0–2.5 RSImod = 0.25–0.60 | Force plate, jump mat, smart phone app, optical sensor (optojump), inertial measurement unit (IMU) | RSI could be a useful method for preseason testing to detect female athletes with higher injury risk and for in-season testing to measure explosiveness and readiness for the match. RSI is a useful tool for designing individually tailored plyometric training, with the recommendation being to perform DJ from the height associated with the highest RSI values. |
BLD | (Bilateral/(right + left unilateral) * 100))–100 | Dynamic contractions: −11.7–9.7% Ballistic contractions: up to −36% Isometric contractions: −8.6–8.5 | Force plate, jump mat, smart phone app, optical sensor (optojump), inertial measurement unit (IMU) | BLD could be associated with CoD ability. Moreover, BLD can be manipulated with resistance training. Emphasizing bilateral actions decreases the BLD, and emphasizing unilateral exercises increases it. If the bilateral facilitation or low levels of BLD are observed, it could be suggested to incorporate more unilateral exercises into the training regime (unless bilateral performance is of primary importance, as in ski jumping), especially for team sport athletes performing several CoD actions. |
FVP jump | Linear regression, using force and velocity data from individual loads to obtain F0, V0, and FV slope. Excel spreadsheet available from Samozino’s group. Pmax = F0 V0/4 | F0 = 29–40 N/kg V0 = 2.2–4.3 m/s Pmax =20–30 W/kg | Force plate, jump mat, velocity tracker, smart phone app, optical sensor (optojump), linear encoder, inertial measurement unit (IMU) Mandatory equipment: weights, measurement tape | Pmax presents a general measure of lower limb capacity, while F0 and V0 are more specific to the movement task. It could be suggested that in general, training should prioritize power ability, while reducing a theoretical FV imbalance could be used as a supplementary part of the training for improving basic physical performance. Parameters of the FV relationship can be improved by implementing specific exercises into training design, such as high loads for increasing F0, and training in high-velocity conditions (i.e., plyometric training) for increasing V0. |
FVP sprint | Linear regression, using force and velocity data from individual steps to obtain F0, V0, and FV slope. Excel spreadsheet available from Samozino’s group. Pmax = F0 V0/4 | F0 = 6–10 N/kg V0 = 6–11 m/s Pmax = 11–25 W/kg RFmax = 37–53% DRF = 7–11% | Timing gates, smart phone app, gun radar, lidar, linear encoder | Similar to the FVP in jumps, Pmax is a general measure of lower limb capacity, while F0 and V0 are more specific to the movement task. RFmax and DRF are specific metrics for evaluating sprinting efficiency. Training towards specific FVP characteristics for improving sport performance should be based on the characteristics of a selected movement task (e.g., improving volleyball spike speed or approach jump performance). Thus, knowing the associations between the FV profile in basic movements (i.e., jump, sprint, and bench press) and sport-specific performance could be useful to guide training-related decisions regarding the improvement of sport-specific performance. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pleša, J.; Kozinc, Ž.; Šarabon, N. A Brief Review of Selected Biomechanical Variables for Sport Performance Monitoring and Training Optimization. Appl. Mech. 2022, 3, 144-159. https://doi.org/10.3390/applmech3010011
Pleša J, Kozinc Ž, Šarabon N. A Brief Review of Selected Biomechanical Variables for Sport Performance Monitoring and Training Optimization. Applied Mechanics. 2022; 3(1):144-159. https://doi.org/10.3390/applmech3010011
Chicago/Turabian StylePleša, Jernej, Žiga Kozinc, and Nejc Šarabon. 2022. "A Brief Review of Selected Biomechanical Variables for Sport Performance Monitoring and Training Optimization" Applied Mechanics 3, no. 1: 144-159. https://doi.org/10.3390/applmech3010011
APA StylePleša, J., Kozinc, Ž., & Šarabon, N. (2022). A Brief Review of Selected Biomechanical Variables for Sport Performance Monitoring and Training Optimization. Applied Mechanics, 3(1), 144-159. https://doi.org/10.3390/applmech3010011