Energy Minimization Scheme for Split Potential Systems Using Exponential Variational Integrators
Abstract
:1. Introduction
2. Exponential Integrators
3. Variational Integrators Based on Interpolation Techniques
3.1. High Order Variational Integrators
3.2. Determination of the Key-Role Parameter u
4. Family of Exponential High Order Variational Integrators
5. Numerical Examples
5.1. Gravitational Motion of the Satellite Solar System
5.2. The Complete Solar System (N = 11)
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Engquist, B.; Fokas, A.; Hairer, E.; Iserles, A. Highly Oscillatory Problems; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Wendlandt, J.; Marsden, J.E. Mechanical integrators derived from a discrete variational principle. Physica D 1997, 106, 223–246. [Google Scholar] [CrossRef] [Green Version]
- Kane, C.; Marsden, J.E.; Ortiz, M. Symplectic-energy-momentum preserving variational integrators. J. Math. Phys. 2001, 40, 3353–3371. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.E.; West, M. Discrete mechanics and variational integrators. Acta Numer. 2001, 10, 357–514. [Google Scholar] [CrossRef] [Green Version]
- Hairer, E.; Lubich, C.; Wanner, G. Geometric numerical integration illustrated by the Störmer-Verlet method. Acta Numer. 2003, 12, 399–450. [Google Scholar] [CrossRef] [Green Version]
- Leimkuhler, B.; Reich, S. Simulating Hamiltonian dynamics. In Cambridge Monographs on Applied and Computational Mathematics; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ober-Blöbaum, S. Galerkin variational integrators and modified symplectic Runge-Kutta methods. IMA J. Numer. Anal. 2017, 37, 375–406. [Google Scholar] [CrossRef]
- Ober-Blöbaum, S.; Saake, N. Construction and analysis of higher order Galerkin variational integrators. Adv. Comput. Math. 2015, 41, 6. [Google Scholar] [CrossRef]
- Campos, C.; Junge, O.; Ober-Blöbaum, S. Higher order variational time discretization of optimal control problems. arXiv 2012, arXiv:1204.6171. [Google Scholar]
- Kosmas, O.T.; Leyendecker, S. Variational integrators for orbital problems using frequency estimation. Adv. Comput. Math. 2019, 45, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, O.T.; Leyendecker, S. Family of higher order exponential variational integrators for split potential systems. J. Phys. Conf. Ser. 2015, 574, 012002. [Google Scholar] [CrossRef]
- Kosmas, O.T.; Vlachos, D.S. Exponential Variational Integrators Using Constant or Adaptive Time Step. In Discrete Mathematics and Applications; Springer: Cham, Switzerland, 2020; pp. 237–258. [Google Scholar]
- Kosmas, O.T. On the stability of exponential variational integrators for multibody systems with holonomic constraints. J. Phys. Conf. Ser. 2020, 1730, 012139. [Google Scholar] [CrossRef]
- Kosmas, O.T. Exponential variational integrators for the dynamics of multibody systems with holonomic constraints. J. Phys. Conf. Ser. 2019, 1391, 012170. [Google Scholar] [CrossRef]
- Kosmas, O.T.; Papadopoulos, D.; Vlachos, D. Geometric derivation and analysis of multi-symplectic numerical schemes for differential equations. Comput. Math. Var. Anal. 2020, 159, 207–226. [Google Scholar]
- Kosmas, O.T.; Leyendecker, S. Stability analysis of high order phase fitted variational integrators. In Proceedings of the 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), Barcelona, Spain, 20–25 July 2014; Volume 1389, pp. 865–866. [Google Scholar]
- Deuflhard, P. A study of extrapolation methods based on multistep schemes without parasitic solutions. Z. Angew. Math. Phys. 1979, 1979 30, 177–189. [Google Scholar] [CrossRef]
- García-Archilla, B.; Sanz-Serna, M.J.; Skeel, R.D. Long-time-step methods for oscillatory differential equations. SIAM J. Sci. Comput. 1999, 20, 930–963. [Google Scholar] [CrossRef] [Green Version]
- Gautschi, W. Numerical integration of ordinary differential equations based on trigonometric polynomials. Numer. Math. 1961, 3, 1. [Google Scholar] [CrossRef]
- Hochbruck, M.; Lubich, C.; Selfhofer, H. Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 1998, 19, 1552–1574. [Google Scholar] [CrossRef] [Green Version]
- Stern, A.; Grinspun, E. Implicit-explicit integration of highly oscillatory problems. SIAM Multiscale Model. Simul. 2009, 7, 1779–1794. [Google Scholar] [CrossRef] [Green Version]
- Reich, S. Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 1999, 36, 1549–1570. [Google Scholar] [CrossRef] [Green Version]
- Leok, M.; Zhang, J. Discrete Hamiltonian variational integrators. IMA J. Numer. Anal. 2011, 31, 1497–1532. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, O.T.; Vlachos, D.S. A space-time geodesic approach for phase fitted variational integrators. J. Phys. Conf. Ser. 2016, 738, 012133. [Google Scholar] [CrossRef]
- Kosmas, O.T.; Vlachos, D.S. Error Analysis Through Energy Minimization and Stability Properties of Exponential Integrators. Nonlinear Anal. Glob. Optim. 2021, 295, 295–307. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmas, O. Energy Minimization Scheme for Split Potential Systems Using Exponential Variational Integrators. Appl. Mech. 2021, 2, 431-441. https://doi.org/10.3390/applmech2030024
Kosmas O. Energy Minimization Scheme for Split Potential Systems Using Exponential Variational Integrators. Applied Mechanics. 2021; 2(3):431-441. https://doi.org/10.3390/applmech2030024
Chicago/Turabian StyleKosmas, Odysseas. 2021. "Energy Minimization Scheme for Split Potential Systems Using Exponential Variational Integrators" Applied Mechanics 2, no. 3: 431-441. https://doi.org/10.3390/applmech2030024
APA StyleKosmas, O. (2021). Energy Minimization Scheme for Split Potential Systems Using Exponential Variational Integrators. Applied Mechanics, 2(3), 431-441. https://doi.org/10.3390/applmech2030024