Robust Filtering Options for Higher-Order Strain Fields Generated by Digital Image Correlation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Simulated Strain Fields
2.2. Experimental Strain Fields
3. Filtering Approach
3.1. Simple Mean Filter
3.2. Gaussian Mean Filter in Spatial Domain
3.3. Gaussian Lpf in Frequency Domain
- (a)
- The strain distribution is transformed from the spatial domain into the frequency domain, , using discrete Fourier transform (DFT).
- (b)
- The obtained spectrum from DFT is shifted to the center by multiplying with , to locate the low frequency peaks at the center of the image .
- (c)
- A Gauss LPF, , with to 10 with increment, is multiplied with the centered spectrum .
- (d)
- Using inverse Fourier transform (IFT), is transformed back to the spatial domain , and the real part of this inversion is shifted again by .
3.4. Error Reduction of Full-Field Strain Evaluation
4. Results
4.1. Simulated Strain Fields
4.2. Experimental Strain Fields
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Sutton, M.A.; Orteu, J.J.; Schreier, H. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Tong, W. An evaluation of digital image correlation criteria for strain mapping applications. Strain 2005, 41, 167–175. [Google Scholar] [CrossRef]
- Sztefek, P.; Vanleene, M.; Olsson, R.; Collinson, R.; Pitsillides, A.A.; Shefelbine, S. Using digital image correlation to determine bone surface strains during loading and after adaptation of the mouse tibia. J. Biomech. 2010, 43, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.; Siegmund, G.; Cripton, P. Comparison of strain rosettes and digital image correlation for measuring vertebral body strain. J. Biomech. Eng. 2016, 138, 054501. [Google Scholar] [CrossRef] [PubMed]
- Hensley, S.; Christensen, M.; Small, S.; Archer, D.; Lakes, E.; Rogge, R. Digital image correlation techniques for strain measurement in a variety of biomechanical test models. Acta Bioeng. Biomech. 2017, 19. [Google Scholar] [CrossRef]
- Acciaioli, A.; Lionello, G.; Baleani, M. Experimentally Achievable Accuracy Using a Digital Image Correlation Technique in measuring Small-Magnitude (less than 0.1%) Homogeneous Strain Fields. Materials 2018, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Perry, C. Strain-Gage Reinforcement Effects on Orthotropic Materials. Exp. Tech. 1986, 10, 20–24. [Google Scholar] [CrossRef]
- Cristofolini, L.; Schileo, E.; Juszczyk, M.; Taddei, F.; Martelli, S.; Viceconti, M. Mechanical testing of bones: The positive synergy of finite–element models and in vitro experiments. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 2010, 368, 2725–2763. [Google Scholar] [CrossRef] [Green Version]
- Lecompte, D.; Bossuyt, S.; Cooreman, S.; Sol, H.; Vantomme, J. Study and generation of optimal speckle patterns for DIC. In Proceedings of the Annual Conference and Exposition on Experimental and Applied Mechanics, Springfield, MA, USA, 3–6 June 2007; pp. 1643–1649. [Google Scholar]
- Barranger, Y.; Doumalin, P.; Dupré, J.; Germaneau, A. Digital Image Correlation Accuracy: Influence of Kind of Speckle and Recording Setup; EDP Sciences: Les Ulis, France, 2010; Volume 6, p. 31002. [Google Scholar]
- Wang, Y.; Lava, P.; Coppieters, S.; De Strycker, M.; Van Houtte, P.; Debruyne, D. Investigation of the uncertainty of DIC under heterogeneous strain states with numerical tests. Strain 2012, 48, 453–462. [Google Scholar] [CrossRef]
- Rajan, V.; Rossol, M.; Zok, F. Optimization of digital image correlation for high-resolution strain mapping of ceramic composites. Exp. Mech. 2012, 52, 1407–1421. [Google Scholar] [CrossRef]
- Mortazavi, F. Development of a Global Digital Image Correlation Approach for Fast High-Resolution Displacement Measurements. Ph.D. Thesis, École Polytechnique de Montréal, Montréal, QC, Canada, 2013. [Google Scholar]
- Lionello, G.; Cristofolini, L. A practical approach to optimizing the preparation of speckle patterns for digital-image correlation. Meas. Sci. Technol. 2014, 25, 107001. [Google Scholar] [CrossRef]
- Lionello, G.; Sirieix, C.; Baleani, M. An effective procedure to create a speckle pattern on biological soft tissue for digital image correlation measurements. J. Mech. Behav. Biomed. Mater. 2014, 39, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Palanca, M.; Tozzi, G.; Cristofolini, L. The use of digital image correlation in the biomechanical area: A review. Int. Biomech. 2016, 3, 1–21. [Google Scholar] [CrossRef]
- Yaofeng, S.; Pang, J.H. Study of optimal subset size in digital image correlation of speckle pattern images. Opt. Lasers Eng. 2007, 45, 967–974. [Google Scholar] [CrossRef]
- Xavier, J.; Sousa, A.M.; Morais, J.J.; Filipe, V.M.; Vaz, M.A. Measuring displacement fields by cross-correlation and a differential technique: Experimental validation. Opt. Eng. 2012, 51, 043602. [Google Scholar] [CrossRef]
- Avril, S.; Feissel, P.; Pierron, F.; Villon, P. Comparison of two approaches for differentiating full-field data in solid mechanics. Meas. Sci. Technol. 2009, 21, 015703. [Google Scholar] [CrossRef] [Green Version]
- Hild, F.; Roux, S. Comparison of local and global approaches to digital image correlation. Exp. Mech. 2012, 52, 1503–1519. [Google Scholar] [CrossRef]
- Wang, B.; Pan, B. Subset-based local vs. finite element-based global digital image correlation: A comparison study. Theor. Appl. Mech. Lett. 2016, 6, 200–208. [Google Scholar] [CrossRef] [Green Version]
- GOM-GmbH. Digital Image Correlation and Strain Computation Basics; GOM-GmbH: Gomadingen, Germany, 2016. [Google Scholar]
- Geers, M.; De Borst, R.; Brekelmans, W. Computing strain fields from discrete displacement fields in 2D-solids. Int. J. Solids Struct. 1996, 33, 4293–4307. [Google Scholar] [CrossRef] [Green Version]
- Rubino, V.; Lapusta, N.; Rosakis, A.; Leprince, S.; Avouac, J. Static laboratory earthquake measurements with the digital image correlation method. Exp. Mech. 2015, 55, 77–94. [Google Scholar] [CrossRef]
- Sun, Y.; Pang, J.H.; Wong, C.K.; Su, F. Finite element formulation for a digital image correlation method. Appl. Opt. 2005, 44, 7357–7363. [Google Scholar] [CrossRef]
- Rubino, V.; Rosakis, A.; Lapusta, N. Full-field ultrahigh-speed quantification of dynamic shear ruptures using digital image correlation. Exp. Mech. 2019, 59, 551–582. [Google Scholar] [CrossRef] [Green Version]
- Mortazavi, F.; Levesque, M.; Villemure, I. Image-based Continuous Displacement Measurements Using an Improved Spectral Approach. Strain 2013, 49, 233–248. [Google Scholar] [CrossRef]
- Baldoni, J.; Lionello, G.; Zama, F.; Cristofolini, L. Comparison of different filtering strategies to reduce noise in strain measurement with digital image correlation. J. Strain Anal. Eng. Des. 2016, 51, 416–430. [Google Scholar] [CrossRef]
- Pan, B. Bias error reduction of digital image correlation using Gaussian pre-filtering. Opt. Lasers Eng. 2013, 51, 1161–1167. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, C.; Song, Y.; Chen, J. Image pre-filtering for measurement error reduction in digital image correlation. Opt. Lasers Eng. 2015, 65, 46–56. [Google Scholar] [CrossRef]
- International, A. E8, Standard Test Methods for Tension Testing of Metallic Materials. Annu. Book Astm Stand. 2004, 3, 57–72. [Google Scholar]
- GOM-GmbH. Acquisition Basic: GOM Software 2016; GOM-GmbH: Gomadingen, Germany, 2015. [Google Scholar]
- Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Addison-Wesley Longman Publishing Co., Inc.: Boston, MA, USA, 1992. [Google Scholar]
- Cofaru, C.; Philips, W.; Van Paepegem, W. A novel speckle pattern—Adaptive digital image correlation approach with robust strain calculation. Opt. Lasers Eng. 2012, 50, 187–198. [Google Scholar] [CrossRef]
- Pan, B.; Yuan, J.; Xia, Y. Strain field denoising for digital image correlation using a regularized cost-function. Opt. Lasers Eng. 2015, 65, 9–17. [Google Scholar] [CrossRef]
- Lecompte, D.; Smits, A.; Bossuyt, S.; Sol, H.; Vantomme, J.; Van Hemelrijck, D.; Habraken, A.M. Quality assessment of speckle patterns for digital image correlation. Opt. Lasers Eng. 2006, 44, 1132–1145. [Google Scholar] [CrossRef] [Green Version]
- Cofaru, C.; Philips, W.; Van Paepegem, W. Improved Newton—Raphson digital image correlation method for full-field displacement and strain calculation. Appl. Opt. 2010, 49, 6472–6484. [Google Scholar] [CrossRef]
- Pan, B.; Tian, L. Advanced video extensometer for non-contact, real-time, high-accuracy strain measurement. Opt. Express 2016, 24, 19082–19093. [Google Scholar] [CrossRef] [PubMed]
- Palanca, M.; Brugo, T.M.; Cristofolini, L. Use of digital image correlation to investigate the biomechanics of the vertebra. J. Mech. Med. Biol. 2015, 15, 1540004. [Google Scholar] [CrossRef]
Filter/Field | Quadratic | Linear | Constant |
---|---|---|---|
Simple mean () | 66% | 69% | 67% |
Gaussian mean () | 72% | 74% | 75% |
Gaussian LPF () | 69% | 69% | 66% |
Load [N] | Reference Strain [strains] | DIC Average Strain ± Std [strains] |
---|---|---|
500 | 288.42 | 267.64 ± 217.76 |
1500 | 689.11 | 610.85 ± 281.87 |
2000 | 1068.57 | 997.15 ± 266.51 |
3000 | 1448.31 | 1394.57 ± 234.39 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amraish, N.; Reisinger, A.; Pahr, D.H. Robust Filtering Options for Higher-Order Strain Fields Generated by Digital Image Correlation. Appl. Mech. 2020, 1, 174-192. https://doi.org/10.3390/applmech1040012
Amraish N, Reisinger A, Pahr DH. Robust Filtering Options for Higher-Order Strain Fields Generated by Digital Image Correlation. Applied Mechanics. 2020; 1(4):174-192. https://doi.org/10.3390/applmech1040012
Chicago/Turabian StyleAmraish, Nedaa, Andreas Reisinger, and Dieter H. Pahr. 2020. "Robust Filtering Options for Higher-Order Strain Fields Generated by Digital Image Correlation" Applied Mechanics 1, no. 4: 174-192. https://doi.org/10.3390/applmech1040012
APA StyleAmraish, N., Reisinger, A., & Pahr, D. H. (2020). Robust Filtering Options for Higher-Order Strain Fields Generated by Digital Image Correlation. Applied Mechanics, 1(4), 174-192. https://doi.org/10.3390/applmech1040012