From Eye Movements to Personality Traits: A Machine Learning Approach in Blood Donation Advertising
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
3.1. Experimental Design and Procedure
3.2. Eye-Tracking Device, Metrics, and Areas of Interest (AOIs)
- Fixation Count: Average fixations/visits detected inside an active area of interest (AOI).
- Fixation Duration: Average duration of all fixations/visits detected inside an active AOI. A visit is defined as the time interval between the first fixation on the active AOI and the end of the last fixation within the same active AOI, where there have been no fixations outside the AOI.
- Saccade Duration: The average duration of all the respondents’ saccades detected inside the AOI.
- Saccade Amplitude: The average amplitude of all the respondent’s saccades detected inside the AOI (i.e., the angular distance that the eyes travelled from the start point to the endpoint).
3.3. Measurements and Research Questions
3.4. Sample Profile
4. Statistical Analysis and Machine Learning Results
4.1. Data Handling and Assumptions
4.2. Non-Parametric Results
4.2.1. Group Comparisons and Differences
4.2.2. Mann–Whitney U Test with Bonferroni Correction
4.2.3. Friedman Test Analysis for Emotional Stimuli
4.3. Robust Regression Models
4.4. Interaction Effects with Generalised Linear Models (GLMs)
4.5. Machine Learning Modelling for Predicting Personality Traits from Eye-Movements
4.5.1. Procedure and Clustering
4.5.2. Data Participation and Model Evaluation
4.5.3. Classification Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Carbonell, J.G.; Michalski, R.S.; Mitchell, T.M. An overview of machine learning. Mach. Learn. 1983, 1, 3–23. [Google Scholar]
- Singh, Y.; Bhatia, P.K.; Sangwan, O. A review of studies on machine learning techniques. Int. J. Comput. Sci. Secur. 2007, 1, 70–84. [Google Scholar]
- Wlodarczak, P. Machine Learning and Its Applications; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An introduction to machine learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef]
- Mahesh, B. Machine learning algorithms—A review. Int. J. Sci. Res. 2020, 9, 381–386. [Google Scholar]
- Skaramagkas, V.; Giannakakis, G.; Ktistakis, E.; Manousos, D.; Karatzanis, I.; Tachos, N.S.; Tripoliti, E.; Marias, K.; Fotiadis, D.I.; Tsiknakis, M. Review of eye tracking metrics involved in emotional and cognitive processes. IEEE Rev. Biomed. Eng. 2021, 16, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Sarker, I.H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef] [PubMed]
- Athey, S. The impact of machine learning on economics. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 507–547. [Google Scholar]
- Evin, M.; Hidalgo-Munoz, A.; Béquet, A.J.; Moreau, F.; Tattegrain, H.; Berthelon, C.; Fort, A.; Jallais, C. Personality trait prediction by machine learning using physiological data and driving behavior. Mach. Learn. Appl. 2022, 9, 100353. [Google Scholar] [CrossRef]
- Seota, S.B.-W.; Klein, R.; Van Zyl, T. Modeling e-behaviour, personality and academic performance with machine learning. Appl. Sci. 2021, 11, 10546. [Google Scholar] [CrossRef]
- Cobb, D.P.; Jashami, H.; Hurwitz, D.S. Bicyclists’ behavioral and physiological responses to varying roadway conditions and bicycle infrastructure. Transp. Res. Part F Traffic Psychol. Behav. 2021, 80, 172–188. [Google Scholar] [CrossRef]
- Taib, R.; Berkovsky, S.; Koprinska, I.; Wang, E.; Zeng, Y.; Li, J. Personality sensing: Detection of personality traits using physiological responses to image and video stimuli. ACM Trans. Interact. Intell. Syst. 2020, 10, 1–32. [Google Scholar] [CrossRef]
- Berkovsky, S.; Taib, R.; Koprinska, I.; Wang, E.; Zeng, Y.; Li, J.; Kleitman, S. Detecting personality traits using eye-tracking data. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Khatri, J.; Marín-Morales, J.; Moghaddasi, M.; Guixeres, J.; Giglioli, I.A.C.; Alcañiz, M. Recognizing personality traits using consumer behavior patterns in a virtual retail store. Front. Psychol. 2022, 13, 752073. [Google Scholar] [CrossRef] [PubMed]
- Allport, F.H.; Allport, G.W. Personality traits: Their classification and measurement. J. Abnorm. Psychol. Soc. Psychol. 1921, 16, 6. [Google Scholar] [CrossRef]
- Goldberg, L.R. The structure of phenotypic personality traits. Am. Psychol. 1993, 48, 26. [Google Scholar] [CrossRef] [PubMed]
- Matthews, G.; Deary, I.J.; Whiteman, M.C. Personality Traits; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Hoppe, S.; Loetscher, T.; Morey, S.A.; Bulling, A. Eye movements during everyday behavior predict personality traits. Front. Hum. Neurosci. 2018, 12, 328195. [Google Scholar] [CrossRef] [PubMed]
- Padilla, J.J.; Kavak, H.; Lynch, C.J.; Gore, R.J.; Diallo, S.Y. Temporal and spatiotemporal investigation of tourist attraction visit sentiment on Twitter. PLoS ONE 2018, 13, e0198857. [Google Scholar] [CrossRef] [PubMed]
- Hoogerwerf, M.D.; Veldhuizen, I.J.; De Kort, W.L.; Frings-Dresen, M.H.; Sluiter, J.K. Factors associated with psychological and physiological stress reactions to blood donation: A systematic review of the literature. Blood Transfus. 2015, 13, 354. [Google Scholar]
- Chell, K.; Mortimer, G. Investigating online recognition for blood donor retention: An experiential donor value approach. Int. J. Nonprofit Volunt. Sect. Mark. 2014, 19, 143–163. [Google Scholar] [CrossRef]
- Al-Samarraie, H.; Eldenfria, A.; Dawoud, H. The impact of personality traits on users’ information-seeking behavior. Inf. Process. Manag. 2017, 53, 237–247. [Google Scholar] [CrossRef]
- Sarsam, S.M.; Al-Samarraie, H.; Alzahrani, A.I. Influence of personality traits on users’ viewing behaviour. J. Inf. Sci. 2023, 49, 233–247. [Google Scholar] [CrossRef]
- Adeyemi, I.R.; Abd Razak, S.; Salleh, M. Understanding online behavior: Exploring the probability of online personality trait using supervised machine-learning approach. Front. ICT 2016, 3, 8. [Google Scholar] [CrossRef]
- Al-Samarraie, H.; Sarsam, S.M.; Alzahrani, A.I.; Alalwan, N.; Masood, M. The role of personality characteristics in informing our preference for visual presentation: An eye movement study. J. Ambient Intell. Smart Environ. 2016, 8, 709–719. [Google Scholar] [CrossRef]
- Al-Samarraie, H.; Sarsam, S.M.; Alzahrani, A.I.; Alalwan, N. Personality and individual differences: The potential of using preferences for visual stimuli to predict the Big Five traits. Cogn. Technol. Work 2018, 20, 337–349. [Google Scholar] [CrossRef]
- Al-Samarraie, H.; Sarsam, S.M.; Alzahrani, A.I. Emotional intelligence and individuals’ viewing behaviour of human faces: A predictive approach. User Model. User-Adapt. Interact. 2023, 33, 889–909. [Google Scholar] [CrossRef]
- Sarsam, S.M.; Al-Samarraie, H. A first look at the effectiveness of personality dimensions in promoting users’ satisfaction with the system. Sage Open 2018, 8, 2158244018769125. [Google Scholar] [CrossRef]
- Wu, D.W.-L.; Bischof, W.F.; Anderson, N.C.; Jakobsen, T.; Kingstone, A. The influence of personality on social attention. Personal. Individ. Differ. 2014, 60, 25–29. [Google Scholar] [CrossRef]
- Sun, B.; Lai, S.; Xu, C.; Xiao, R.; Wei, Y.; Xiao, Y. Differences of online learning behaviors and eye-movement between students having different personality traits. In Proceedings of the 1st ACM SIGCHI International Workshop on Multimodal Interaction for Education, Glasgow, UK, 13 November 2017; pp. 71–75. [Google Scholar]
- Perlman, S.B.; Morris, J.P.; Vander Wyk, B.C.; Green, S.R.; Doyle, J.L.; Pelphrey, K.A. Individual differences in personality predict how people look at faces. PLoS ONE 2009, 4, e5952. [Google Scholar] [CrossRef] [PubMed]
- Hilliard, A.; Kazim, E.; Bitsakis, T.; Leutner, F. Measuring personality through images: Validating a forced-choice image-based assessment of the big five personality traits. J. Intell. 2022, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Salima, M.; M‘hammed, S.; Messaadia, M.; Benslimane, S.M. Machine Learning for Predicting Personality Traits from Eye Tracking. In Proceedings of the 2023 International Conference on Decision Aid Sciences and Applications (DASA), Annaba, Algeria, 16–17 September 2023; pp. 126–130. [Google Scholar]
- Woods, C.; Luo, Z.; Watling, D.; Durant, S. Twenty seconds of visual behaviour on social media gives insight into personality. Sci. Rep. 2022, 12, 1178. [Google Scholar] [CrossRef] [PubMed]
- Duchowski, A.T.; Duchowski, A.T. Eye Tracking Methodology: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Carter, B.T.; Luke, S.G. Best practices in eye tracking research. Int. J. Psychophysiol. 2020, 155, 49–62. [Google Scholar] [CrossRef]
- Suresh, K. An overview of randomization techniques: An unbiased assessment of outcome in clinical research. J. Hum. Reprod. Sci. 2011, 4, 8–11. [Google Scholar] [CrossRef]
- Mohr, D.L.; Wilson, W.J.; Freund, R.J. Statistical Methods; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Balaskas, S.; Rigou, M. The effects of emotional appeals on visual behavior in the context of green advertisements: An exploratory eye-tracking study. In Proceedings of the 27th Pan-Hellenic Conference on Progress in Computing and Informatics, Lamia, Greece, 24–26 November 2023; pp. 141–149. [Google Scholar]
- Zhang, L.; Yao, M.; Liu, H.; Zheng, S. The effect of functional motivation on future intention to donate blood: Moderating role of the blood donor’s stage. Int. J. Environ. Res. Public Health 2021, 18, 9115. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, E.; Edwards, A.R.; Masser, B.M. Simple reciprocal fairness message to enhance non-donor’s willingness to donate blood. Ann. Behav. Med. 2022, 56, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Y.; Zhang, S.; Xiao, M. How anxiety relates to blood donation intention of non-donors: The roles of moral disengagement and mindfulness. J. Soc. Psychol. 2024, 164, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Balaskas, S.; Koutroumani, M.; Rigou, M. The Mediating Role of Emotional Arousal and Donation Anxiety on Blood Donation Intentions: Expanding on the Theory of Planned Behavior. Behav. Sci. 2024, 14, 242. [Google Scholar] [CrossRef] [PubMed]
- Tobii Pro AB. Tobii Pro Nano; Tobii Pro AB: Stockholm, Sweden, 2024. [Google Scholar]
- iMotions (Version 9. 4); iMotions A/S: Copenhagen, Denmark, 2022. [Google Scholar]
- Komogortsev, O.V.; Gobert, D.V.; Jayarathna, S.; Gowda, S.M. Standardization of automated analyses of oculomotor fixation and saccadic behaviors. IEEE Trans. Biomed. Eng. 2010, 57, 2635–2645. [Google Scholar] [CrossRef]
- Olsen, A. The Tobii I-VT fixation filter. Tobii Technol. 2012, 21, 4–19. [Google Scholar]
- Salvucci, D.D.; Goldberg, J.H. Identifying fixations and saccades in eye-tracking protocols. In Proceedings of the 2000 Symposium on Eye Tracking Research & Applications, Palm Beach Gardens, FL, USA, 6–8 November 2000; pp. 71–78. [Google Scholar]
- Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to Methods and Measures; OUP Oxford: Oxford, UK, 2011. [Google Scholar]
- Orquin, J.L.; Ashby, N.J.; Clarke, A.D. Areas of interest as a signal detection problem in behavioral eye-tracking research. J. Behav. Decis. Mak. 2016, 29, 103–115. [Google Scholar] [CrossRef]
- Friedrich, M.; Rußwinkel, N.; Möhlenbrink, C. A guideline for integrating dynamic areas of interests in existing set-up for capturing eye movement: Looking at moving aircraft. Behav. Res. Methods 2017, 49, 822–834. [Google Scholar] [CrossRef] [PubMed]
- Peng-Li, D.; Mathiesen, S.L.; Chan, R.C.; Byrne, D.V.; Wang, Q.J. Sounds Healthy: Modelling sound-evoked consumer food choice through visual attention. Appetite 2021, 164, 105264. [Google Scholar] [CrossRef]
- Silva, B.B.; Orrego-Carmona, D.; Szarkowska, A. Using linear mixed models to analyze data from eye-tracking research on subtitling. Transl. Spaces 2022, 11, 60–88. [Google Scholar] [CrossRef]
- Brown-Schmidt, S.; Naveiras, M.; De Boeck, P.; Cho, S.-J. Statistical modeling of intensive categorical time-series eye-tracking data using dynamic generalized linear mixed-effect models with crossed random effects. In Psychology of Learning and Motivation; Elsevier: Amsterdam, The Netherlands, 2020; Volume 73, pp. 1–31. [Google Scholar]
- Galanakis, M.; Stalikas, A.; Pezirkianidis, C.; Karakasidou, I. Reliability and validity of the modified differential emotions scale (mDES) in a Greek sample. Psychology 2016, 7, 101. [Google Scholar] [CrossRef]
- Ashton, M.C.; Lee, K. The HEXACO–60: A short measure of the major dimensions of personality. J. Personal. Assess. 2009, 91, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Bashiri, H.; Barahmand, U.; Akabri, Z.S.; Ghamari, G.H.; Vusugi, A. A study of the psychometric properties and the standardization of hexaco personality inventory. Procedia-Soc. Behav. Sci. 2011, 30, 1173–1176. [Google Scholar] [CrossRef]
- Bisong, E. Google Colaboratory. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [Google Scholar]
- Royston, P. Approximating the Shapiro-Wilk W-test for non-normality. Stat. Comput. 1992, 2, 117–119. [Google Scholar] [CrossRef]
- Hanusz, Z.; Tarasińska, J. Normalization of the Kolmogorov–Smirnov and Shapiro–Wilk tests of normality. Biom. Lett. 2015, 52, 85–93. [Google Scholar] [CrossRef]
- O’brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A simple test for heteroscedasticity and random coefficient variation. Econom. J. Econom. Soc. 1979, 47, 1287–1294. [Google Scholar] [CrossRef]
- Waldman, D.M. A note on algebraic equivalence of White’s test and a variation of the Godfrey/Breusch-Pagan test for heteroscedasticity. Econ. Lett. 1983, 13, 197–200. [Google Scholar] [CrossRef]
- Halunga, A.G.; Orme, C.D.; Yamagata, T. A heteroskedasticity robust Breusch–Pagan test for Contemporaneous correlation in dynamic panel data models. J. Econom. 2017, 198, 209–230. [Google Scholar] [CrossRef]
- Schultz, B.B. Levene’s test for relative variation. Syst. Zool. 1985, 34, 449–456. [Google Scholar] [CrossRef]
- Gastwirth, J.L.; Gel, Y.R.; Miao, W. The impact of Levene’s test of equality of variances on statistical theory and practice. Statist. Sci. 2009, 24, 343–360. [Google Scholar] [CrossRef]
- Vargha, A.; Delaney, H.D. The Kruskal-Wallis test and stochastic homogeneity. J. Educ. Behav. Stat. 1998, 23, 170–192. [Google Scholar] [CrossRef]
- Dinno, A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J. 2015, 15, 292–300. [Google Scholar] [CrossRef]
- MacFarland, T.W.; Yates, J.M.; MacFarland, T.W.; Yates, J.M. Kruskal–Wallis H-test for oneway analysis of variance (ANOVA) by ranks. In Introduction to Nonparametric Statistics for the Biological Sciences Using R; Springer: Berlin/Heidelberg, Germany, 2016; pp. 177–211. [Google Scholar]
- Mays, J.E.; Birch, J.B.; Einsporn, R.L. An overview of model-robust regression. J. Stat. Comput. Simul. 2000, 66, 79–100. [Google Scholar] [CrossRef]
- Andersen, R. Modern Methods for Robust Regression; Sage: Newcastle upon Tyne, UK, 2008. [Google Scholar]
- Alma, Ö.G. Comparison of robust regression methods in linear regression. Int. J. Contemp. Math. Sci. 2011, 6, 409–421. [Google Scholar]
- Baş, S.; Carello, G.; Lanzarone, E.; Ocak, Z.; Yalçındağ, S. Management of blood donation system: Literature review and research perspectives. In Health Care Systems Engineering for Scientists and Practitioners: HCSE, Lyon, France, May 2015; Springer: Berlin/Heidelberg, Germany, 2016; pp. 121–132. [Google Scholar]
- Ostertagova, E.; Ostertag, O.; Kováč, J. Methodology and application of the Kruskal-Wallis test. Appl. Mech. Mater. 2014, 611, 115–120. [Google Scholar] [CrossRef]
- Cleophas, T.J.; Zwinderman, A.H.; Cleophas, T.J.; Zwinderman, A.H. Non-parametric tests for three or more samples (Friedman and Kruskal-Wallis). In Clinical Data Analysis on a Pocket Calculator: Understanding the Scientific Methods of Statistical Reasoning and Hypothesis Testing; Springer: Berlin/Heidelberg, Germany, 2016; pp. 193–197. [Google Scholar]
- Armstrong, R.A. When to use the B onferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Lambert-Lacroix, S.; Zwald, L. Robust regression through the Huber’s criterion and adaptive lasso penalty. Electron. J. Statist. 2011, 5, 1015–1053. [Google Scholar] [CrossRef]
- Huang, D.; Cabral, R.; De la Torre, F. Robust regression. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 363–375. [Google Scholar] [CrossRef]
- Feng, Y.; Wu, Q. A statistical learning assessment of Huber regression. J. Approx. Theory 2022, 273, 105660. [Google Scholar] [CrossRef]
- Barr, D.J.; Levy, R.; Scheepers, C.; Tily, H.J. Random effects structure for confirmatory hypothesis testing: Keep it maximal. J. Mem. Lang. 2013, 68, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Hastie, T.J.; Pregibon, D. Generalized linear models. In Statistical Models; Routledge: Abingdon, UK, 2017; pp. 195–247. [Google Scholar]
- Kiefer, C.; Mayer, A. Average effects based on regressions with a logarithmic link function: A new approach with stochastic covariates. Psychometrika 2019, 84, 422–446. [Google Scholar] [CrossRef]
- Ng, V.K.; Cribbie, R.A. The gamma generalized linear model, log transformation, and the robust Yuen-Welch test for analyzing group means with skewed and heteroscedastic data. Commun. Stat. Simul. Comput. 2019, 48, 2269–2286. [Google Scholar] [CrossRef]
- Bender, R.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
- Khuri, A.I.; Mukherjee, B.; Sinha, B.K.; Ghosh, M. Design issues for generalized linear models: A review. Stat. Sci. 2006, 21, 376–399. [Google Scholar] [CrossRef]
- Barr, D.J. Analyzing ‘visual world’ eyetracking data using multilevel logistic regression. J. Mem. Lang. 2008, 59, 457–474. [Google Scholar] [CrossRef]
- Pauler, D.K.; Escobar, M.D.; Sweeney, J.A.; Greenhouse, J. Mixture models for eye-tracking data: A case study. Stat. Med. 1996, 15, 1365–1376. [Google Scholar] [CrossRef]
- Mézière, D.C.; Yu, L.; Reichle, E.D.; Von Der Malsburg, T.; McArthur, G. Using eye-tracking measures to predict reading comprehension. Read. Res. Q. 2023, 58, 425–449. [Google Scholar] [CrossRef]
- LaValle, S.M.; Branicky, M.S.; Lindemann, S.R. On the relationship between classical grid search and probabilistic roadmaps. Int. J. Robot. Res. 2004, 23, 673–692. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Nielsen, F.; Nielsen, F. Hierarchical clustering. In Introduction to HPC with MPI for Data Science; Springer: Berlin/Heidelberg, Germany, 2016; pp. 195–211. [Google Scholar]
- Murtagh, F.; Contreras, P. Algorithms for hierarchical clustering: An overview, II. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 7, e1219. [Google Scholar] [CrossRef]
- Jakkula, V. Tutorial on support vector machine (svm). Sch. EECS Wash. State Univ. 2006, 37, 3. [Google Scholar]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Kartini, D.; Nugrahadi, D.T.; Farmadi, A. Hyperparameter tuning using GridsearchCV on the comparison of the activation function of the ELM method to the classification of pneumonia in toddlers. In Proceedings of the 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), Jakarta, Indonesia, 14–15 September 2021; pp. 390–395. [Google Scholar]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, G.; Verma, A.K.; Radhika, S. K-nearest neighbors and grid search cv based real time fault monitoring system for industries. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019; pp. 1–5. [Google Scholar]
- Boateng, E.Y.; Otoo, J.; Abaye, D.A. Basic tenets of classification algorithms K-nearest-neighbor, support vector machine, random forest and neural network: A review. J. Data Anal. Inf. Process. 2020, 8, 341–357. [Google Scholar] [CrossRef]
- Vieira, S.M.; Kaymak, U.; Sousa, J.M. Cohen’s kappa coefficient as a performance measure for feature selection. In Proceedings of the International Conference on Fuzzy Systems, Barcelona, Spain, 18–23 July 2010; pp. 1–8. [Google Scholar]
- Lipton, Z.C.; Elkan, C.; Narayanaswamy, B. Thresholding classifiers to maximize F1 score. arXiv 2014, arXiv:1402.1892. [Google Scholar]
- Flach, P.; Kull, M. Precision-recall-gain curves: PR analysis done right. Adv. Neural Inf. Process. Syst. 2015, 28, 838–846. [Google Scholar]
- Yin, M.; Wortman Vaughan, J.; Wallach, H. Understanding the effect of accuracy on trust in machine learning models. In Proceedings of the 2019 Chi Conference on Human Factors in Computing Systems, Hamburg, Germany, 11–16 May 2019; pp. 1–12. [Google Scholar]
- Yacouby, R.; Axman, D. Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. In Proceedings of the 1st Workshop on Evaluation and Comparison of NLP Systems, Virtual, 20 November 2020; pp. 79–91. [Google Scholar]
- Bleidorn, W.; Hopwood, C.J. Using machine learning to advance personality assessment and theory. Personal. Soc. Psychol. Rev. 2019, 23, 190–203. [Google Scholar] [CrossRef]
- Shashikala, B.; Pushpalatha, M.; Vijaya, B. Machine learning approaches for potential blood donors prediction. In Emerging Research in Electronics, Computer Science and Technology: Proceedings of International Conference; Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; Volume 545, pp. 483–491. [Google Scholar] [CrossRef]
- Evans, R.; Ferguson, E. Defining and measuring blood donor altruism: A theoretical approach from biology, economics and psychology. Vox Sang. 2014, 106, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Karacan, E.; Seval, G.C.; Aktan, Z.; Ayli, M.; Palabiyikoglu, R. Blood donors and factors impacting the blood donation decision: Motives for donating blood in Turkish sample. Transfus. Apher. Sci. 2013, 49, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Faqah, A.; Moiz, B.; Shahid, F.; Ibrahim, M.; Raheem, A. Assessment of blood donation intention among medical students in Pakistan–An application of theory of planned behavior. Transfus. Apher. Sci. 2015, 53, 353–359. [Google Scholar] [CrossRef]
- Ferguson, E.; Murray, C.; O’Carroll, R.E. Blood and organ donation: Health impact, prevalence, correlates, and interventions. Psychol. Health 2019, 34, 1073–1104. [Google Scholar] [CrossRef] [PubMed]
Emotional Arousal | Textual Message | Number of Ads | Selected Emotions |
---|---|---|---|
Positive | Altruistic | 3 | Joy, interest, inspiration |
Positive | Egocentric | 3 | Joy, interest, inspiration |
Negative | Altruistic | 3 | Disgust, guilt, fear |
Negative | Egocentric | 3 | Disgust, guilt, fear |
Total number of ads: 12 |
Frequency | Percentage | ||
---|---|---|---|
Gender | Male | 42 | 56% |
Female | 33 | 44% | |
Age | 18–25 | 64 | 85.3% |
26–30 | 11 | 14.7% | |
Education | High school graduate | 3 | 4% |
Bachelor student | 61 | 81.3% | |
Graduate | 6 | 8% | |
Postgraduate | 3 | 4% | |
PhD candidate | 2 | 2.7% |
Metric | Test Statistic (H) | p-Values | Notes |
---|---|---|---|
Fixation duration (AOI) | 83.593 | <0.001 | Across ad types |
Saccade duration (AOI) | 1030.702 | <0.001 | Across ad types |
Saccade amplitude (AOI) | 205.736 | <0.001 | Across ad types |
Fixation count (AOI) | 1441.419 | <0.001 | Across ad types |
Saccade duration (message) | 41.654 | <0.001 | Altruistic vs. egoistic |
Fixation count (message) | 82.156 | <0.001 | Altruistic vs. egoistic |
Saccade amplitude (message) | 3.929 | 0.047 | Altruistic vs. egoistic |
Comparing Groups | Statistic (U) | p-Value |
---|---|---|
emotion_disgust_altr vs. emotion_inter_altr | 7433.0 | <0.001 |
emotion_disgust_altr vs. logo_disgust_altr | 4011.0 | <0.001 |
emotion_disgust_altr vs. logo_disgust_ego | 2509.0 | <0.001 |
emotion vs. logo | 270,728.0 | <0.001 |
emotion vs. text | 571,833.0 | <0.001 |
message type: altr vs. ego | 660,466.0 | <0.001 |
logo vs. text | 61,391.0 | <0.001 |
Comparing Groups | Statistic (U) | p-Value |
---|---|---|
emotion_disgust_altr vs. emotion_fear_altr | 3103.5 | <0.001 |
emotion_disgust_altr vs. emotion_insp_altr | 981.0 | <0.001 |
emotion_disgust_altr vs. emotion_insp_ego | 1669.5 | <0.001 |
emotion_disgust_altr vs. emotion_joy_altr | 1932.0 | <0.001 |
emotion vs. logo | 278,041.0 | <0.001 |
emotion vs. text | 190,139.0 | <0.001 |
message type: altr vs. ego | 438,168.5 | <0.001 |
logo vs. text | 6178.5 | <0.001 |
text vs. text1 | 46,054.0 | <0.001 |
text vs. text2 | 41,720.0 | <0.001 |
Metric | Friedman Test Statistic | Friedman p-Value | Sig. Pairwise Comparisons (Dunn’s Test) | p-Values (Dunn’s Test) |
---|---|---|---|---|
Fixation duration | 21.57 | <0.001 | disgust vs. joy | 0.005 |
Saccade duration | 68.33 | <0.001 | disgust vs. fear, disgust vs. insp, disgust vs. inter | Ranges from < 0.001 to 0.801 |
Saccade amplitude | 15.36 | 0.009 | disgust vs. fear | 0.005 |
Fixation count | 69.29 | <0.001 | disgust vs. inter, insp vs. inter | 0.002, 0.008 |
Personality Trait | Eye-Tracking Metric | Coefficient | p-Value | 95% CI |
---|---|---|---|---|
Honesty–humility | Fixation duration | −14.20 | 0.015 | [−25.67, −2.73] |
Openness | Saccade duration | 358.98 | 0.002 | [130.60, 587.36] |
Extraversion | Saccade amplitude | 7.37 | 0.013 | [1.57, 13.18] |
Openness | Fixation count | 1.02 | 0.044 | [0.02, 2.02] |
Dependent Variable | Independent Variable | Coeff. | SE | p-Value | 95% CI | Interpretation |
---|---|---|---|---|---|---|
Fixation duration | Ego message type | −0.0849 | 0.042 | 0.045 | [−0.168, −0.002] | Main effect showing negative influence |
Fixation duration | Honesty–humility (trait effect) | −0.0835 | 0.029 | 0.004 | [−0.141, −0.026] | Lower levels associated with shorter durations |
Saccade duration | Positive emotions and ego message type | 0.2222 | 0.050 | <0.001 | [0.125, 0.319] | Significant interaction enhancing durations |
Saccade duration | Ego message type | −0.2729 | 0.038 | <0.001 | [−0.348, −0.198] | Negative main effect |
Saccade amplitude | Extraversion (trait effect) | 0.0419 | 0.016 | 0.011 | [0.010, 0.074] | Higher levels increase amplitude |
Fixation count | Positive emotions and ego message type | −0.3627 | 0.053 | <0.001 | [−0.467, −0.259] | Significant interaction decreasing counts |
Fixation count | Positive emotions | 0.1070 | 0.040 | 0.007 | [0.029, 0.185] | Positive main effect |
Fixation count | Ego message type | 0.4911 | 0.036 | <0.001 | [0.420, 0.562] | Positive main effect |
Fixation count | Openness to experience (trait effect) | 0.0797 | 0.037 | 0.031 | [0.007, 0.152] | Higher levels linked to more fixation counts |
Model | Best Parameters | Accuracy (%) | Cohen’s Kappa | Precision | Recall | F1 Score |
---|---|---|---|---|---|---|
SVM | C: 10, gamma: 0.1 | 86.66% | 0.8125 | 91.67% | 90.0% | 89.44% |
Random Forest | max depth: None, n_estimators: 50 | 66.67% | 0.5253 | 56.25% | 55.0% | 52.08% |
KNN | n_neighbours: 7 | 86.67% | 0.8065 | 65.83% | 70.0% | 67.17% |
Comparison | Precision p-Value | Recall p-Value | F1 Score p-Value | Accuracy p-Value |
---|---|---|---|---|
KNN vs. Random Forest | >0.05 | >0.05 | >0.05 | 0.881478 |
KNN vs. SVM | 0.081762 | 0.061546 | 0.056275 | 0.320794 |
Random Forest vs. SVM | 0.028002 | 0.010410 | 0.011763 | 0.023310 |
Model | Accuracy (%) | Cohen’s Kappa | Precision (%) | Recall (%) | F1 Score (%) |
---|---|---|---|---|---|
SVM | 98.67% | 0.981 | 98% | 98.81% | 98.88% |
KNN | 92% | 0.882 | 69.18% | 71.84% | 70.43% |
Random Forest | 86.67% | 0.804 | 65% | 68.17% | 66.37% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balaskas, S.; Koutroumani, M.; Rigou, M.; Sirmakessis, S. From Eye Movements to Personality Traits: A Machine Learning Approach in Blood Donation Advertising. AI 2024, 5, 635-666. https://doi.org/10.3390/ai5020034
Balaskas S, Koutroumani M, Rigou M, Sirmakessis S. From Eye Movements to Personality Traits: A Machine Learning Approach in Blood Donation Advertising. AI. 2024; 5(2):635-666. https://doi.org/10.3390/ai5020034
Chicago/Turabian StyleBalaskas, Stefanos, Maria Koutroumani, Maria Rigou, and Spiros Sirmakessis. 2024. "From Eye Movements to Personality Traits: A Machine Learning Approach in Blood Donation Advertising" AI 5, no. 2: 635-666. https://doi.org/10.3390/ai5020034
APA StyleBalaskas, S., Koutroumani, M., Rigou, M., & Sirmakessis, S. (2024). From Eye Movements to Personality Traits: A Machine Learning Approach in Blood Donation Advertising. AI, 5(2), 635-666. https://doi.org/10.3390/ai5020034