Living Skin Substitute Tissue—Is a Replacement for the Autograft Possible?
Abstract
:1. Introduction
2. Epidermal-Only Autologous Living Tissue
3. Bilayered Autologous Living Tissue
4. Bilayered Allogeneic Living Tissue
5. Gaps in Knowledge and Future Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chogan, F.; Chen, Y.; Wood, F.; Jeschke, M.G. Skin Tissue Engineering Advances in Burns: A Brief Introduction to the Past, the Present, and the Future Potential. J. Burn Care Res. 2023, 44, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Leon-Villapalos, J.; Barret, J.P. Surgical Repair of the Acute Burn Wound: Who, When, What Techniques? What Is the Future? J. Burn Care Res. 2023, 44, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, A.M.; Mahajan, N.; Atala, A.; Murphy, S.V. Advances in Skin Tissue Engineering and Regenerative Medicine. J. Burn Care Res. 2023, 44, S33–S41. [Google Scholar] [CrossRef] [PubMed]
- Wood, F.M. The Role of Cell-Based Therapies in Acute Burn Wound Skin Repair: A Review. J. Burn Care Res. 2023, 44, S42–S47. [Google Scholar] [CrossRef] [PubMed]
- Rheinwald, J.G.; Green, H. Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells. Cell 1975, 6, 331–343. [Google Scholar] [CrossRef]
- Altman, L. Test tube’ skin helps save 2 burn victims. New York Times, 16 August 1984; p. 1. [Google Scholar]
- Gallico, G.G.; O’Connor, N.E.; Compton, C.C.; Kehinde, O.; Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 1984, 311, 448–451. [Google Scholar] [CrossRef]
- Green, H. The birth of therapy with cultured cells. Bioessays 2008, 30, 897–903. [Google Scholar] [CrossRef]
- Odessey, R. Addendum: Multicenter experience with cultured epidermal autograft for treatment of burns. J. Burn Care Rehabil. 1992, 13, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Baus, A.; Keilani, C.; Brunet-Possenti, F.; Sophie Bich, C.; Deschamps, L.; Brachet, M.; Bey, E.; Duhamel, P. Marjolin ulcers after cultured epidermal autograft in severely burned patients: A rare case series and literature review. Eur. J. Dermatol. 2021, 31, 759–770. [Google Scholar] [CrossRef]
- Theopold, C.; Eriksson, E. The need for aggressive follow-up after cultured epidermal autograft-grafted full-thickness burn. Plast. Reconstr. Surg. 2006, 117, 708. [Google Scholar] [CrossRef]
- Epicel (Cultured Epidermal Autografts). Available online: https://www.fda.gov/vaccines-blood-biologics/approved-blood-products/epicel-cultured-epidermal-autografts (accessed on 5 August 2023).
- Yano, K.; Watanabe, N.; Tsuyuki, K.; Ikawa, T.; Kasanuki, H.; Yamato, M. Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan. Regen. Ther. 2015, 1, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Alliance for Regenerative Medicine. Available online: https://alliancerm.org/available-products/ (accessed on 5 August 2023).
- Li, J.; Chen, S.; Uyama, T.; Wu, W.; Xu, J. Clinical Application of Cultured Stratified Epithelial Sheets Grown Under Feeder or Feeder-Free Conditions for Stable Vitiligo. Dermatol. Surg. 2019, 45, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Mak, V.H.; Cumpstone, M.B.; Kennedy, A.H.; Harmon, C.S.; Guy, R.H.; Potts, R.O. Barrier function of human keratinocyte cultures grown at the air-liquid interface. J. Investig. Dermatol. 1991, 96, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Chiba, T.; Ishida, N.; Kohda, F.; Furue, M. Air exposure may be associated with the histological differentiation of a cultured epidermal autograft (JACE). Australas. J. Dermatol. 2018, 59, e244–e246. [Google Scholar] [CrossRef] [PubMed]
- Cuono, C.; Langdon, R.; McGuire, J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1986, 1, 1123–1124. [Google Scholar] [CrossRef] [PubMed]
- Heard, J.; Sen, S.; Greenhalgh, D.; Palmieri, T.; Romanowski, K. Use of Cultured Epithelial Autograft in Conjunction with Biodegradable Temporizing Matrix in Massive Burns: A Case Series. J. Burn Care Res. 2023, irad076. [Google Scholar] [CrossRef]
- Akita, S.; Hayashida, K.; Yoshimoto, H.; Fujioka, M.; Senju, C.; Morooka, S.; Nishimura, G.; Mukae, N.; Kobayashi, K.; Anraku, K.; et al. Novel Application of Cultured Epithelial Autografts (CEA) with Expanded Mesh Skin Grafting Over an Artificial Dermis or Dermal Wound Bed Preparation. Int. J. Mol. Sci. 2017, 19, 57. [Google Scholar] [CrossRef]
- Matsumura, H.; Matsushima, A.; Ueyama, M.; Kumagai, N. Application of the cultured epidermal autograft “JACE(®”) for treatment of severe burns: Results of a 6-year multicenter surveillance in Japan. Burns 2016, 42, 769–776. [Google Scholar] [CrossRef]
- Matsumura, H.; Gondo, M.; Imai, R.; Shibata, D.; Watanabe, K. Chronological histological findings of cultured epidermal autograft over bilayer artificial dermis. Burns 2013, 39, 705–713. [Google Scholar] [CrossRef]
- Cortez Ghio, S.; Larouche, D.; Doucet, E.J.; Germain, L. The role of cultured autologous bilayered skin substitutes as epithelial stem cell niches after grafting: A systematic review of clinical studies. Burn. Open 2021, 5, 56–66. [Google Scholar] [CrossRef]
- Germain, L.; Larouche, D.; Nedelec, B.; Perreault, I.; Duranceau, L.; Bortoluzzi, P.; Beaudoin Cloutier, C.; Genest, H.; Caouette-Laberge, L.; Dumas, A.; et al. Autologous bilayered self-assembled skin substitutes (SASSs) as permanent grafts: A case series of 14 severely burned patients indicating clinical effectiveness. Eur. Cell Mater. 2018, 36, 128–141. [Google Scholar] [CrossRef]
- Dagher, J.; Arcand, C.; Auger, F.A.; Germain, L.; Moulin, V.J. The Self-Assembled Skin Substitute History: Successes, Challenges, and Current Treatment Indications. J. Burn Care Res. 2023, 44, S57–S64. [Google Scholar] [CrossRef]
- Boyce, S.T.; Kagan, R.J.; Meyer, N.A.; Yakuboff, K.P.; Warden, G.D. The 1999 clinical research award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J. Burn Care Rehabil. 1999, 20, 453–461. [Google Scholar] [CrossRef]
- Boyce, S.T.; Supp, A.P.; Wickett, R.R.; Hoath, S.B.; Warden, G.D. Assessment with the dermal torque meter of skin pliability after treatment of burns with cultured skin substitutes. J. Burn Care Rehabil. 2000, 21, 55–63. [Google Scholar] [CrossRef]
- Boyce, S.T.; Goretsky, M.J.; Greenhalgh, D.G.; Kagan, R.J.; Rieman, M.T.; Warden, G.D. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann. Surg. 1995, 222, 743–752. [Google Scholar] [CrossRef]
- Boyce, S.T.; Kagan, R.J. Composition and Performance of Autologous Engineered Skin Substitutes for Repair or Regeneration of Excised, Full-Thickness Burns. J. Burn Care Res. 2023, 44, S50–S56. [Google Scholar] [CrossRef]
- Boyce, S.T.; Kagan, R.J.; Yakuboff, K.P.; Meyer, N.A.; Rieman, M.T.; Greenhalgh, D.G.; Warden, G.D. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 2002, 235, 269–279. [Google Scholar] [CrossRef]
- Boyce, S.T.; Simpson, P.S.; Rieman, M.T.; Warner, P.M.; Yakuboff, K.P.; Bailey, J.K.; Nelson, J.K.; Fowler, L.A.; Kagan, R.J. Randomized, Paired-Site Comparison of Autologous Engineered Skin Substitutes and Split-Thickness Skin Graft for Closure of Extensive, Full-Thickness Burns. J. Burn Care Res. 2017, 38, 61–70. [Google Scholar] [CrossRef]
- Meuli, M.; Hartmann-Fritsch, F.; Hüging, M.; Marino, D.; Saglini, M.; Hynes, S.; Neuhaus, K.; Manuel, E.; Middelkoop, E.; Reichmann, E.; et al. A Cultured Autologous Dermo-epidermal Skin Substitute for Full-Thickness Skin Defects: A Phase I, Open, Prospective Clinical Trial in Children. Plast. Reconstr. Surg. 2019, 144, 188–198. [Google Scholar] [CrossRef]
- Waymack, P.; Duff, R.G.; Sabolinski, M. The effect of a tissue engineered bilayered living skin analog, over meshed split-thickness autografts on the healing of excised burn wounds. The Apligraf Burn Study Group. Burns 2000, 26, 609–619. [Google Scholar] [CrossRef]
- Allen-Hoffmann, B.L.; Schlosser, S.J.; Ivarie, C.A.; Sattler, C.A.; Meisner, L.F.; O’Connor, S.L. Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J. Investig. Dermatol. 2000, 114, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Centanni, J.M.; Straseski, J.A.; Wicks, A.; Hank, J.A.; Rasmussen, C.A.; Lokuta, M.A.; Schurr, M.J.; Foster, K.N.; Faucher, L.D.; Caruso, D.M.; et al. StrataGraft skin substitute is well-tolerated and is not acutely immunogenic in patients with traumatic wounds: Results from a prospective, randomized, controlled dose escalation trial. Ann. Surg. 2011, 253, 672–683. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.L.F.; Holmes, J.H.; Shupp, J.W.; Smith, D.; Joe, V.; Carson, J.; Litt, J.; Kahn, S.; Short, T.; Cancio, L.; et al. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns 2021, 47, 1024–1037. [Google Scholar] [CrossRef] [PubMed]
- Schurr, M.J.; Foster, K.N.; Centanni, J.M.; Comer, A.R.; Wicks, A.; Gibson, A.L.; Thomas-Virnig, C.L.; Schlosser, S.J.; Faucher, L.D.; Lokuta, M.A.; et al. Phase I/II clinical evaluation of StrataGraft: A consistent, pathogen-free human skin substitute. J. Trauma. 2009, 66, 866–873; discussion 873–874. [Google Scholar] [CrossRef]
- Holmes Iv, J.H.; Cancio, L.C.; Carter, J.E.; Faucher, L.D.; Foster, K.; Hahn, H.D.; King, B.T.; Rutan, R.; Smiell, J.M.; Wu, R.; et al. Pooled safety analysis of STRATA2011 and STRATA2016 clinical trials evaluating the use of StrataGraft® in patients with deep partial-thickness thermal burns. Burns 2022, 48, 1816–1824. [Google Scholar] [CrossRef]
- Holmes, J.H.; Schurr, M.J.; King, B.T.; Foster, K.; Faucher, L.D.; Lokuta, M.A.; Comer, A.R.; Rooney, P.J.; Barbeau, K.F.; Mohoney, S.T.; et al. An open-label, prospective, randomized, controlled, multicenter, phase 1b study of StrataGraft skin tissue versus autografting in patients with deep partial-thickness thermal burns. Burns 2019, 45, 1749–1758. [Google Scholar] [CrossRef]
- Gibson, A.L.; Thomas-Virnig, C.L.; Centanni, J.M.; Schlosser, S.J.; Johnston, C.E.; Van Winkle, K.F.; Szilagyi, A.; He, L.K.; Shankar, R.; Allen-Hoffmann, B.L. Nonviral human beta defensin-3 expression in a bioengineered human skin tissue: A therapeutic alternative for infected wounds. Wound Repair Regen. 2012, 20, 414–424. [Google Scholar] [CrossRef]
- Rasmussen, C.A.; Gibson, A.L.; Schlosser, S.J.; Schurr, M.J.; Allen-Hoffmann, B.L. Chimeric composite skin substitutes for delivery of autologous keratinocytes to promote tissue regeneration. Ann. Surg. 2010, 251, 368–376. [Google Scholar] [CrossRef]
- Thomas-Virnig, C.L.; Centanni, J.M.; Johnston, C.E.; He, L.K.; Schlosser, S.J.; Van Winkle, K.F.; Chen, R.; Gibson, A.L.; Szilagyi, A.; Li, L.; et al. Inhibition of multidrug-resistant Acinetobacter baumannii by nonviral expression of hCAP-18 in a bioengineered human skin tissue. Mol. Ther. 2009, 17, 562–569. [Google Scholar] [CrossRef]
- Karim, A.S.; Yan, A.; Ocotl, E.; Bennett, D.D.; Wang, Z.; Kendziorski, C.; Gibson, A.L.F. Discordance between histologic and visual assessment of tissue viability in excised burn wound tissue. Wound Repair Regen. 2019, 27, 150–161. [Google Scholar] [CrossRef]
- Kalsi, R.; Messner, F.; Brandacher, G. Skin xenotransplantation: Technological advances and future directions. Curr. Opin. Organ Transplant. 2020, 25, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Iwase, H.; King, T.W.; Hara, H.; Cooper, D.K.C. Skin xenotransplantation: Historical review and clinical potential. Burns 2018, 44, 1738–1749. [Google Scholar] [CrossRef] [PubMed]
Pros | Cons | Commercially Available Approval Status for Burn Indication | |
---|---|---|---|
Epidermal autologous living tissue |
|
|
|
Bilayered autologous living tissue |
|
|
|
Bilayered allogeneic living tissue |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, A.L.F. Living Skin Substitute Tissue—Is a Replacement for the Autograft Possible? Eur. Burn J. 2023, 4, 492-500. https://doi.org/10.3390/ebj4030031
Gibson ALF. Living Skin Substitute Tissue—Is a Replacement for the Autograft Possible? European Burn Journal. 2023; 4(3):492-500. https://doi.org/10.3390/ebj4030031
Chicago/Turabian StyleGibson, Angela L. F. 2023. "Living Skin Substitute Tissue—Is a Replacement for the Autograft Possible?" European Burn Journal 4, no. 3: 492-500. https://doi.org/10.3390/ebj4030031
APA StyleGibson, A. L. F. (2023). Living Skin Substitute Tissue—Is a Replacement for the Autograft Possible? European Burn Journal, 4(3), 492-500. https://doi.org/10.3390/ebj4030031