Damage Control Surgery after Burn Injury: A Narrative Review
Abstract
:1. Introduction
2. Rationale for Use of Damage Control Surgery in Burn Patients
3. Second Hit and Early Neutrophil Changes in Burn Patients and Their Prognostic Relevance
4. Burn Toxins and Debridement of the Burn Eschar—What Is the Clinical Evidence?
5. Transfusion Requirements and Control of Blood Loss in Burn Patients
6. Future Aspects of Damage Control (DC) Burn Management and Safe Definitive Surgery (SDS) in Burns
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bartels, P.; Thamm, O.C.; Elrod, J.; Fuchs, P.; Reinshagen, K.; German Burn Registry; Koenigs, I. The ABSI is dead, long live the ABSI—reliable prediction of survival in burns with a modified Abbreviated Burn Severity Index. Burns 2020, 46, 1272–1279. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, M.G.; Pinto, R.; Kraft, R.; Nathens, A.B.; Finnerty, C.C.; Gamelli, R.L.; Gibran, N.S.; Klein, M.B.; Arnoldo, B.D.; Tompkins, R.G.; et al. Morbidity and survival probability in burn patients in modern burn care. Crit. Care Med. 2015, 43, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Rotondo, M.F.; Schwab, C.W.; McGonigal, M.D.; Phillips, G.R.; Fruchtermann, T.M.; Kauder, D.R.; Latenser, B.A.; Angood, P.A. Damage control: An approach for improved survival in exsanguinating penetrating abdominal injury. J. Trauma 1993, 35, 373–383. [Google Scholar] [CrossRef]
- Pape, H.C.; Leenen, L. Polytrauma management—What is new and what is true in 2020? J. Clin. Orthop. Trauma 2021, 12, 88–95. [Google Scholar] [CrossRef]
- Pape, H.-C.; Halvachizadeh, S.; Leenen, L.; Velmahos, G.D.; Buckley, R.; Giannoudis, P.V. Timing of major fracture care in polytrauma patients—An update on principles, parameters and strategies for 2020. Injury 2019, 50, 1656–1670. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, J.; Nicol, A.; Kairinos, N.; Teijink, J.; Prins, M.; Navsaria, P. Predicting mortality in damage control surgery for major abdominal trauma. S. Afr. J. Surg. 2010, 48, 6–9. [Google Scholar]
- Weber, D.G.; Bendinelli, C.; Balogh, Z.J. Damage control surgery for abdominal emergencies. Br. J. Surg. 2014, 101, e109–e118. [Google Scholar] [CrossRef]
- Gilbert, F.; Schneemann, C.; Scholz, C.J.; Kickuth, R.; Meffert, R.H.; Wildenauer, R.; Lorenz, U.; Kellersmann, R.; Busch, A. Clinical implications of fracture-associated vascular damage in extremity and pelvic trauma. BMC Musculoskelet. Disord. 2018, 19, 404. [Google Scholar] [CrossRef] [Green Version]
- Manzano-Nunez, R.; Chica, J.; Gómez, A.; Naranjo, M.P.; Chaves, H.; Muñoz, L.E.; Rengifo, J.E.; Caicedo-Holguin, I.; Puyana, J.C.; García, A.F. The tenets of intrathoracic packing during damage control thoracic surgery for trauma patients: A systematic review. Eur. J. Trauma Emerg. Surg. 2021, 47, 423–434. [Google Scholar] [CrossRef]
- Vargas, M.; García, A.; Caicedo, Y.; Parra, M.W.; Ordoñez, C.A. Damage control in the intensive care unit: What should the intensive care physician know and do? Colomb. Med. 2021, 52, e4174810. [Google Scholar] [CrossRef]
- Sherren, P.B.; Hussey, J.; Martin, R.; Kundishora, T.; Parker, M.; Emerson, B. Lethal triad in severe burns. Burns 2014, 40, 1492–1496. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, V.; Karki, D.; Jatin, B. Concept of Lethal Triad in Critical Care of Severe Burn Injury. Indian J. Crit. Care Med. 2019, 23, 206–209. [Google Scholar] [PubMed]
- Hostler, D.; Weaver, M.D.; Ziembicki, J.A.; Kowger, H.L.; McEntire, S.J.; Rittenberger, J.C.; Callaway, C.W.; Patterson, P.D.; Corcos, A.C. Admission temperature and survival in patients admitted to burn centers. J. Burn Care Res. 2013, 34, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, B.; Kenngott, T.; Fischer, S.; Hundeshagen, G.; Hartmann, B.; Horter, J.; Münzberg, M.; Kneser, U.; Hirche, C. Early hypothermia as risk factor in severely burned patients: A retrospective outcome study. Burns 2019, 45, 1895–1900. [Google Scholar] [CrossRef] [PubMed]
- Ehrl, D.; Heidekrueger, P.I.; Rubenbauer, J.; Ninkovic, M.; Broer, P.N. Impact of Prehospital Hypothermia on the Outcomes of Severely Burned Patients. J. Burn Care Res. 2018, 39, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Ziolkowski, N.; Rogers, A.D.; Xiong, W.; Hong, B.; Patel, S.; Trull, B.; Jeschke, M.G. The impact of operative time and hypo-thermia in acute burn surgery. Burns 2017, 43, 1673–1681. [Google Scholar] [CrossRef] [PubMed]
- Madrid, E.; Urrútia, G.; Roqué i Figuls, M.; Pardo-Hernandez, H.; Campos, J.M.; Paniagua, P.; Maestre, L.; Alonso-Coello, P. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst. Rev. 2016, 4, CD009016. [Google Scholar] [CrossRef]
- Ball, R.L.; Keyloun, J.W.; Brummel-Ziedins, K.; Orfeo, T.; Palmieri, T.L.; Johnson, L.S.; Moffatt, L.T.; Pusateri, A.E.; Shupp, J.W. Burn-Induced Coagulopathies: A Comprehensive Review. Shock 2020, 54, 154–167. [Google Scholar] [CrossRef]
- García-Avello, A.; Lorente, J.A.; Cesar-Perez, J.; García-Frade, L.J.; Alvarado, R.; Arévalo, J.M.; Navarro, J.L.; Esteban, A. Degree of hypercoagulability and hyperfibrinolysis is related to organ failure and prognosis after burn trauma. Thromb. Res. 1998, 89, 59–64. [Google Scholar] [CrossRef]
- Pusateri, A.E.; Le, T.D.; Keyloun, J.W.; Moffatt, L.T.; Orfeo, T.; Brummel-Ziedins, K.E.; McLawhorn, M.M.; Callcut, R.A.; Shupp, J.W.; SYSCOT Study Group. Early abnormal fibrinolysis and mortality in patients with thermal injury: A prospective cohort study. BJS Open 2021, 5, zrab017. [Google Scholar] [CrossRef]
- Sherren, P.B.; Hussey, J.; Martin, R.; Kundishora, T.; Parker, M.; Emerson, B. Acute burn induced coagulopathy. Burns 2013, 39, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Huzar, T.F.; Martinez, E.; Love, J.; George, T.C.; Shah, J.; Baer, L.; Cross, J.M.; Wade, C.E.; Cotton, B.A. Admission Rapid Thrombelastography (rTEG) Values Predict Resuscitation Volumes and Patient Outcomes After Thermal Injury. J. Burn Care Res. 2018, 39, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Muthukumar, V.; Arumugam, P.K.; Narasimhan, A.; Kumar, S.; Sharma, U.; Sharma, S.; Kain, R. Blood Lactate and Lactate Clearance: Refined Biomarker and Prognostic Marker in Burn Resuscitation. Ann. Burn. Fire Disasters 2020, 33, 293–298. [Google Scholar]
- Steinvall, I.; Elmasry, M.; Abdelrahman, I.; El-Serafi, A.; Sjöberg, F. Addition of admission lactate levels to Baux score improves mortality prediction in severe burns. Sci. Rep. 2021, 11, e18038. [Google Scholar] [CrossRef] [PubMed]
- Ratto, N. Early Total Care versus Damage Control: Current Concepts in the Orthopedic Care of Polytrauma Patients. ISRN Orthop. 2013, 2013, 329452. [Google Scholar] [CrossRef]
- Pape, H.C.; Giannoudis, P.V.; Krettek, C.; Trentz, O. Timing of fixation of major fractures in blunt polytrauma: Role of con-ventional indicators in clinical decision making. J. Orthop. Trauma 2005, 19, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Pape, H.C. Damage-control orthopaedic surgery in polytrauma: Influence on the clinical course and its pathogenetic back-ground. Eur. Instr. Lect. 2009, 9, 67–74. [Google Scholar]
- Lip, H.T.C.; Idris, M.A.M.; Imran, F.H.; Azmah, T.N.; Huei, T.J.; Thomas, M. Predictors of mortality and validation of burn mortality prognostic scores in a Malaysian burns intensive care unit. BMC Emerg. Med. 2019, 19, 66. [Google Scholar] [CrossRef]
- Sharma, S.; Tandon, R. Predicting Burn Mortality Using a Simple Novel Prediction Model. Indian J. Plast. Surg. 2021, 54, 46–52. [Google Scholar] [CrossRef]
- Butt, I.; Shrestha, B.M. Two-hit hypothesis and multiple organ dysfunction syndrome. J. Nepal Med. Assoc. 2008, 47, 82–85. [Google Scholar] [CrossRef]
- Moore, F.A.; Moore, E.E.; Read, R.A. Postinjury multiple organ failure: Role of extrathoracic injury and sepsis in adult respir-atory distress syndrome. New Horiz. 1993, 1, 538–549. [Google Scholar] [PubMed]
- Osuka, A.; Ogura, H.; Ueyama, M.; Shimazu, T.; Lederer, J.A. Immune response to traumatic injury: Harmony and discordance of immune system homeostasis. Acute Med. Surg. 2014, 1, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Murphey, T.J.; Paterson, H.M.; Kriynovich, S.; Zang, Y.; Kurt-Jones, E.A.; Mannick, J.A.; Lederer, J.A. Linking the “two-hit” response following injury to enhanced TLR4 reactivity. J. Leukoc. Biol. 2005, 77, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Pottecher, J.; Meyer, A.; Wenceslau, C.F.; Timmermans, K.; Hauser, C.J.; Land, W.G. Editorial: Trauma-Induced, DAMP-Mediated Remote Organ Injury, and Immunosuppression in the Acutely Ill Patient. Front. Immunol. 2019, 10, e1971. [Google Scholar] [CrossRef]
- Manson, J.; Thiemermann, C.; Brohi, K. Trauma alarmins as activators of damage-induced inflammation. Br. J. Surg. 2012, 99 (Suppl. 1), 12–20. [Google Scholar] [CrossRef]
- Qian, L.W.; Evani, S.J.; Chen, P.; Brandenburg, K.S.; Weaver, A.J.; Fourcaudot, A.B.; Abercrombie, J.J.; Sebastian, E.A.; Leung, K.P. Cerium Nitrate Treatment Provides Eschar Stabilization through Reduction in Bioburden, DAMPs, and Inflammatory Cytokines in a Rat Scald Burn Model. J. Burn Care Res. 2020, 41, 576–584. [Google Scholar] [CrossRef]
- Carter, D.W.; Prudovsky, I.; Kacer, D.; Soul, T.; Kumpel, C.; Pyburn, K.; Palmeri, M.; Kramer, R.; Rappold, J. Tranexamic acid suppresses the release of mitochondrial DAMPs and reduces lung inflammation in a murine burn model. J. Trauma Acute Care Surg. 2019, 86, 617–624. [Google Scholar] [CrossRef]
- Finnerty, C.C.; Jeschke, M.G.; Qian, W.J.; Kaushal, A.; Xiao, W.; Liu, T.; Gritsenko, M.A.; Moore, R.J.; Camp, D.G., 2nd; Moldawer, L.L.; et al. Investigators of the Inflammation and the Host Response Glue Grant. Determination of burn patient outcome by large-scale quantitative discovery proteomics. Crit. Care Med. 2013, 41, 1421–1434. [Google Scholar] [CrossRef] [Green Version]
- Sood, R.F.; Gibran, N.S.; Arnoldo, B.D.; Gamelli, R.L.; Herndon, D.N.; Tompkins, R.G.; Inflammation the Host Response to Injury Investigators. Early leukocyte gene expression associated with age, burn size, and inhalation injury in severely burned adults. J. Trauma Acute Care Surg. 2016, 80, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Hansbrough, J.F.; Zapata-Sirvent, R.L.; Peterson, V.M. Immunomodulation following burn injury. Surg. Clin. North Am. 1987, 67, 69–92. [Google Scholar] [CrossRef]
- Ogle, C.K.; Alexander, J.W.; Nagy, H.; Wood, S.; Palkert, D.; Carey, M.; Ogle, J.D.; Warden, G.D. A long-term study and correlation of lymphocyte and neutrophil function in the patient with burns. J. Burn Care Rehabil. 1990, 11, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Parment, K.; Zetterberg, A.; Ernerudh, J.; Bakteman, K.; Steinwall, I.; Sjoberg, F. Long-term immunosuppression in burned patients assessed by in vitro neutrophil oxidative burst (Phagoburst). Burns 2007, 33, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Hazeldine, J.; McGee, K.C.; Al-Tarrah, K.; Hassouna, T.; Patel, K.; Imran, R.; Bishop, J.R.B.; Bamford, A.; Barnes, D.; Wilson, Y.; et al. Multicentre, longitudinal, observational cohort study to examine the relationship between neutrophil function and sepsis in adults and children with severe thermal injuries: A protocol for the Scientific Inves-tigation of the Biological Pathways Following Thermal Injury-2 (SIFTI-2) study. BMJ Open 2021, 11, e052035. [Google Scholar] [CrossRef]
- Pape, H.C.; van Griensven, M.; Rice, J.; Gänsslen, A.; Hildebrand, F.; Zech, S.; Winny, M.; Lichtinghagen, R.; Krettek, C. Major secondary surgery in blunt trauma patients and perioperative cytokine liberation: Determination of the clinical relevance of biochemical markers. J. Trauma 2001, 50, 989–1000. [Google Scholar] [CrossRef]
- Ong, Y.S.; Samuel, M.; Song, C. Meta-analysis of early excision of burns. Burns 2006, 32, 145–150. [Google Scholar] [CrossRef]
- Barret, J.P.; Herndon, D.N. Effects of burn wound excision on bacterial colonization and invasion. Plast. Reconstr. Surg. 2003, 111, 744–750. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, M.; Hästbacka, J.; Glaumann, C.; Freden, F.; Huss, F.; Lipcsey, M. The time-course of the inflammatory response to major burn injury and its relation to organ failure and outcome. Burns 2019, 45, 354–363. [Google Scholar] [CrossRef]
- Hu, L.; Wang, B.; Hong, Y.; Xu, L.; Jiang, Y.; Wang, C.; Zhu, B.; Yu, Q.; Hou, W.; Chen, Z.; et al. Admission Neutrophil-Lymphocyte Ratio (NLR) Predicts Survival in Patients with Extensive Burns. Burns 2021, 47, 594–600. [Google Scholar] [CrossRef]
- Johansson, J.; Sjögren, F.; Bodelsson, M.; Sjöberg, F. Dynamics of leukocyte receptors after severe burns: An exploratory study. Burns 2011, 37, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Spijkerman, R.; Hesselink, L.; Bongers, S.; van Wessem, K.J.P.; Vrisekoop, N.; Hietbrink, F.; Koenderman, L.; Leenen, L.P.H. Point-of-Care Analysis of Neutrophil Phenotypes: A First Step Toward Immuno-Based Precision Medicine in the Trauma ICU. Crit. Care Explor. 2020, 2, e0158. [Google Scholar] [CrossRef] [PubMed]
- Brom, J.; Köller, M.; Schlüter, B.; Müller-Lange, P.; Steinau, H.U.; König, W. Expression of the adhesion molecule CD11b and polymerization of actin by polymorphonuclear granulocytes of patients endangered by sepsis. Burns 1995, 21, 427–431. [Google Scholar] [CrossRef]
- Rodeberg, D.A.; Bass, R.C.; Alexander, J.W.; Warden, G.D.; Babcock, G.F. Neutrophils from burn patients are unable to increase the expression of CD11b/CD18 in response to inflammatory stimuli. J. Leukoc. Biol. 1997, 61, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Teuben, M.; Heeres, M.; Blokhuis, T.; Hollman, A.; Vrisekoop, N.; Tan, E.; Pfeifer, R.; Pape, H.C.; Koenderman, L.; Leenen, L.P.H. Instant intra-operative neutropenia despite the emergence of banded (CD16(dim)/CD62L(bright)) neutrophils in pe-ripheral blood—An observational study during extensive trauma-surgery in pigs. Injury 2021, 52, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Groeneveld, K.M.; Koenderman, L.; Warren, B.L.; Jol, S.; Leenen, L.P.H.; Hietbrink, F. Early decreased neutrophil respon-siveness is related to late onset sepsis in multitrauma patients: An international cohort study. PLoS ONE 2017, 12, e0180145. [Google Scholar] [CrossRef] [Green Version]
- Steer, J.A.; Hill, G.B.; Wilson, A.P. The effect of burn wound surgery and teicoplanin on the bactericidal activity of polymor-phonuclear leucocytes against Staphylococcus aureus. J. Antimicrob. Chemother. 1995, 36, 851–855. [Google Scholar] [CrossRef]
- Hietbrink, F.; Koenderman, L.; Althuizen, M.; Leenen, L.P.H. Modulation of the innate immune response after trauma visu-alised by a change in functional PMN phenotype. Injury 2009, 40, 851–855. [Google Scholar] [CrossRef]
- Rani, M.; Nicholson, S.E.; Zhang, Q.; Schwacha, M.G. Damage-associated molecular patterns (DAMPs) released after burn are associated with inflammation and monocyte activation. Burns 2017, 43, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Hampson, P.; Dinsdale, R.J.; Wearn, C.M.; Bamford, A.L.; Bishop, J.R.B.; Hazeldine, J.; Moiemen, N.S.; Harrison, P.; Lord, J.M. Neutrophil dysfunction, immature granulocytes, and cell-free DNA are early biomarkers of sepsis in burn-injured patients: A prospective observational cohort study. Ann. Surg. 2017, 265, 1241–1249. [Google Scholar] [CrossRef]
- D’Arpa, P.; Leung, K.P. Toll-Like Receptor Signaling in Burn Wound Healing and Scarring. Adv. Wound Care 2017, 6, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Allgöwer, M.; Burri, C.; Cueni, L.; Engley, F.; Fleisch, H.; Gruber, U.F.; Harder, F.; Russell, R.G. Study of burn toxins. Ann. N. Y. Acad. Sci. 1968, 150, 807–815. [Google Scholar] [CrossRef] [PubMed]
- Allgöwer, M.; Städtler, K.; Schoenenberger, G.A. Burn sepsis and burn toxin. Ann. R. Coll. Surg. Engl. 1974, 55, 226–235. [Google Scholar] [PubMed]
- Hansbrough, J.F.; Zapata-Sirvent, R.; Peterson, V.; Wang, X.; Bender, E.; Claman, H.; Boswick, J. Characterization of the immunosuppressive effect of burned tissue in an animal model. J. Surg. Res. 1984, 37, 383–393. [Google Scholar] [CrossRef]
- Heimbach, D.M. Early burn excision and grafting. Surg. Clin. N. Am. 1987, 67, 93–107. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Gilpin, D.A.; Meyer, N.A.; Herndon, D.N. Current treatment of severely burned patients. Ann. Surg. 1996, 223, 14–25. [Google Scholar] [CrossRef]
- Still, J.M., Jr.; Law, E.J. Primary excision of the burn wound. Clin. Plast. Surg. 2000, 27, 23–47. [Google Scholar] [CrossRef]
- Peterson, V.M.; Hansbrough, J.F.; Wang, X.W.; Zapata-Sirvent, R.; Boswick, J.A., Jr. Topical cerium nitrate prevents postburn immunosuppression. J. Trauma 1985, 25, 1039–1044. [Google Scholar]
- Scheidegger, D.; Sparkes, B.G.; Lüscher, N.; Schoenenberger, G.A.; Allgöwer, M. Survival in major burn injuries treated by one bathing in cerium nitrate. Burns 1992, 18, 296–300. [Google Scholar] [CrossRef]
- Vehmeyer-Heeman, M.; Van Holder, C.; Nieman, F.; Van den Kerckhove, E.; Boeckx, W. Predictors of mortality: A comparison between two burn wound treatment policies. Burns 2007, 33, 167–172. [Google Scholar] [CrossRef]
- Reese, A.D.; Keyloun, J.W.; Garg, G.; McLawhorn, M.M.; Moffatt, L.T.; Travis, T.E.; Johnson, L.S.; Shupp, J.W. Compounded Cerium Nitrate-Silver Sulfadiazine Cream is Safe and Effective for the Treatment of Burn Wounds: A Burn Center’s Four-Year Experience. J. Burn Care Res. 2021, 20, irab180. [Google Scholar] [CrossRef]
- Wong, L.; Rajandram, R.; Allorto, N. Systematic review of excision and grafting in burns: Comparing outcomes of early and late surgery in low and high-income countries. Burns 2021, 47, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Rennekampff, H.O.; Hansbrough, J.F.; Tenenhaus, M.; Kiessig, V.; Yi, E.S. Effects of early and delayed wound excision on pulmonary leucosequestration and neutrophil respiratory burst activity in burned mice. Surgery 1995, 118, 884–892. [Google Scholar] [CrossRef]
- Bagheri, M.; Fuchs, P.C.; Lefering, R.; Grigutsch, D.; Busche, M.N.; Niederstätter, I.; The German Burn Registry; Schiefer, J.L. Effect of comorbidities on clinical outcome of patients with burn injury—An analysis of the German Burn Registry. Burns 2021, 47, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Jackman, R.P.; Utter, G.H.; Muench, M.O.; Heitman, J.W.; Munz, M.M.; Jackman, R.W.; Biswas, H.H.; Rivers, R.M.; Tobler, L.H.; Busch, M.P.; et al. Distinct roles of trauma and transfusion in induction of immune modulation after injury. Transfusion 2012, 52, 2533–2550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, J.R.; Malone, D.L.; Tracy, J.K.; Napolitano, L.M. Allogenic blood transfusion in the first 24 hours after trauma is asso-ciated with increased systemic inflammatory response syndrome (SIRS) and death. Surg. Infect. 2004, 5, 395–404. [Google Scholar] [CrossRef]
- Hirche, C.; Citterio, A.; Hoeksema, H.; Koller, J.; Lehner, M.; Martinez, J.R.; Monstrey, S.; Murray, A.; Plock, J.A.; Sander, F.; et al. Eschar removal by bromelain based enzymatic debridement (Nexobrid®) in burns: An Eu-ropean consensus. Burns 2017, 43, 1640–1653. [Google Scholar] [CrossRef] [PubMed]
- Mattern, M.M.; Fuchs, P.C.; Schiefer, J.L. Role, development and value of enzymatic debridement as integrant component in initial treatment of burn injuries. Eur. Burn J. 2022. submitted. [Google Scholar]
- Rosenberg, L.; Krieger, Y.; Bogdanov-Berezovski, A.; Silberstein, E.; Shoham, Y.; Singer, A.J. A novel rapid and selective en-zymatic debridement agent for burn wound management: A multi-center RCT. Burns 2014, 40, 466–474. [Google Scholar] [CrossRef]
- Rosenberg, L.; Shoham, Y.; Krieger, Y.; Rubin, G.; Sander, F.; Koller, J.; David, K.; Egosi, D.; Ahuja, R.; Singer, A.J. Minimally invasive burn care: A review of seven clinical studies of rapid and selective debridement using a bromelain-based debriding enzyme (Nexobrid®). Ann. Burn. Fire Disasters 2015, 28, 264–274. [Google Scholar]
- Monafo, W.W.; Tandon, S.N.; Ayvazian, V.H.; Tuchschmidt, J.; Skinner, A.M.; Deitz, F. Cerium nitrate: A new topical antiseptic for extensive burns. Surgery 1976, 80, 465–473. [Google Scholar]
- Pidcoke, H.F.; Isbell, C.L.; Herzig, M.C.; Fedyk, C.G.; Schaffer, B.S.; Chung, K.K.; White, C.E.; Wolf, S.E.; Wade, C.E.; Cap, A.P. Acute blood loss during burn and soft tissue excisions: An observational study of blood product resuscitation practices and focused review. J. Trauma Acute Care Surg. 2015, 78, S39–S47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemi, T.; Svartling, N.; Syrjälä, M.; Asko-Seljavaara, S.; Rosenberg, P. Haemostatic disturbances in burned patients during early excision and skin grafting. Blood Coagul. Fibrinolysis 1998, 9, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Tichil, I.; Rosenblum, S.; Paul, E.; Cleland, H. Treatment of Anaemia in Patients with Acute Burn Injury: A Study of Blood Transfusion Practices. J. Clin. Med. 2021, 10, 476. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, T.L.; Holmes, J.H., 4th; Arnoldo, B.; Peck, M.; Potenza, B.; Cochran, A.; King, B.T.; Dominic, W.; Cartotto, R.; Bhavsar, D.; et al. Trans-fusion Requirement in Burn Care Evaluation (TRIBE): A Multicenter Randomized Prospective Trial of Blood Transfusion in Major Burn Injury. Ann. Surg. 2017, 266, 595–602. [Google Scholar] [CrossRef] [Green Version]
- American Red Cross. A Compendium of Transfusion Practice Guidelines. 2021. Available online: https://www.redcrossblood.org/content/dam/redcrossblood/rcb/biomedical-services/components/compendium_v_4.0.pdf (accessed on 11 February 2022).
- American Society of Anesthesiologists Task Force on Perioperative Blood Management. Practice guidelines for perioperative blood management: An updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Man-agement. Anesthesiology 2015, 122, 241–275. [Google Scholar] [CrossRef]
- Patil, V.; Shetmahajan, M. Massive transfusion and massive transfusion protocol. Indian J. Anaesth. 2014, 58, 590–595. [Google Scholar] [CrossRef]
- Palmieri, T.L. Burn injury and blood transfusion. Curr. Opin. Anaesthesiol. 2019, 32, 247–251. [Google Scholar] [CrossRef]
- Tejiram, S.; Sen, S.; Romanowski, K.S.; Greenhalgh, D.G.; Palmieri, T.L. Examining 1:1 vs. 4:1 Packed Red Blood Cell to Fresh Frozen Plasma Ratio Transfusion During Pediatric Burn Excision. J. Burn Care Res. 2020, 41, 443–449. [Google Scholar] [CrossRef]
- Kashuk, J.L.; Moore, E.E.; Sawyer, M.; Le, T.; Johnson, J.; Biffl, W.L.; Cothren, C.C.; Barnett, C.; Stahel, P.; Sillman, C.C.; et al. Postinjury coagulopathy management: Goal directed resuscitation via POC thrombelastography. Ann. Surg. 2010, 251, 604–614. [Google Scholar] [CrossRef]
- Welling, H.; Ostrowski, S.R.; Stensballe, J.; Vestergaard, M.R.; Partoft, S.; White, J.; Johansson, P.I. Management of bleeding in major burn surgery. Burns 2019, 45, 755–762. [Google Scholar] [CrossRef]
- Ajai, K.S.; Kumar, P.; Subair, M.; Sharma, R.K. Effect of single dose intravenous tranexamic acid on blood loss in tangential excision of burn wounds—A double blind randomised controlled trial. Burns 2021, in press. [Google Scholar] [CrossRef]
- Domínguez, A.; Alsina, E.; Landín, L.; García-Miguel, J.F.; Casado, C.; Gilsanz, F. Transfusion requirements in burn patients undergoing primary wound excision: Effect of tranexamic acid. Minerva Anestesiol. 2017, 83, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Ockerman, A.; Vanassche, T.; Garip, M.; Vandenbriele, C.; Engelen, M.M.; Martens, J.; Politis, C.; Jacobs, R.; Verhamme, P. Tranexamic acid for the prevention and treatment of bleeding in surgery, trauma and bleeding disorders: A narrative review. Thromb. J. 2021, 19, e54. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rennekampff, H.-O.; Tenenhaus, M. Damage Control Surgery after Burn Injury: A Narrative Review. Eur. Burn J. 2022, 3, 278-289. https://doi.org/10.3390/ebj3020024
Rennekampff H-O, Tenenhaus M. Damage Control Surgery after Burn Injury: A Narrative Review. European Burn Journal. 2022; 3(2):278-289. https://doi.org/10.3390/ebj3020024
Chicago/Turabian StyleRennekampff, Hans-Oliver, and Mayer Tenenhaus. 2022. "Damage Control Surgery after Burn Injury: A Narrative Review" European Burn Journal 3, no. 2: 278-289. https://doi.org/10.3390/ebj3020024
APA StyleRennekampff, H. -O., & Tenenhaus, M. (2022). Damage Control Surgery after Burn Injury: A Narrative Review. European Burn Journal, 3(2), 278-289. https://doi.org/10.3390/ebj3020024