Mechanical Ventilation Strategies in the Critically Ill Burn Patient: A Practical Review for Clinicians
Abstract
:1. Introduction
2. Common Pulmonary Problems Associated with Burn Injury
2.1. Inhalation Injury
2.2. Acute Respiratory Distress Syndrome
3. Who Requires Intubation?
4. Conventional Lung-Protective Ventilation
5. Alternative Modes of Ventilation
5.1. High-Frequency Percussive Ventilation
5.2. Airway-Pressure-Release Ventilation
6. Spontaneous Awakening and Breathing Trials
7. High-Risk Extubations
8. Noninvasive Modes of Mechanical Ventilation
8.1. Continuous Positive Airway Pressure (CPAP)
8.2. Bilevel Positive Airway Pressure (BiPAP)
8.3. High-Flow Nasal Cannula
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
Disclaimer
References
- Belenkiy, S.M.; Buel, A.R.; Cannon, J.; Sine, C.R.; Aden, J.K.; Henderson, J.L.; Liu, N.T.; Lundy, J.B.; Renz, E.M.; Batchinsky, A.I.; et al. Acute respiratory distress syndrome in wartime military burns: Application of the Berlin criteria. J. Trauma Acute Care Surg. 2014, 76, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.C.; Ferrada, P.A.; Kadri, S.S.; Nataraj-Bhandari, K.; Vahedian-Azimi, A.; Quraishi, S.A. High-frequency ventilation modalities as salvage therapy for smoke inhalation–Associated acute lung injury: A systematic review. J. Intensive Care Med. 2018, 33, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Walker, P.F.; Buehner, M.F.; Wood, L.A.; Boyer, N.L.; Driscoll, I.R.; Lundy, J.B.; Cancio, L.C.; Chung, K.K. Diagnosis and management of inhalation injury: An updated review. Crit. Care 2015, 19, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, K.-Y.; Lin, Y.-W.; Chiang, C.-E.; Tseng, C.-W. Respiratory management in smoke inhalation injury. J. Burn Care Res. 2019, 40, 507–512. [Google Scholar] [CrossRef]
- Chung, K.K.; Wolf, S.; Renz, E.M.; Allan, P.F.; Aden, J.K.; Merrill, G.A.; Shelhamer, M.C.; King, B.T.; White, C.E.; Bell, D.G.; et al. High-frequency percussive ventilation and low tidal volume ventilation in burns: A randomized controlled trial. Crit. Care Med. 2010, 38, 1970–1977. [Google Scholar] [CrossRef] [PubMed]
- Cancio, L.C. Airway management and smoke inhalation injury in the burn patient. Clin. Plast. Surg. 2009, 36, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Batchinsky, A.I.; Burkett, S.E.; Zanders, T.B.; Chung, K.K.; Regn, D.D.; Jordan, B.S.; Necsoiu, C.; Nguyen, R.; Hanson, M.A.; Morris, M.J.; et al. Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine. Crit. Care Med. 2011, 39, 2314–2321. [Google Scholar] [CrossRef] [PubMed]
- Dancey, D.R.; Hayes, J.; Gomez, M.; Schouten, D.; Fish, J.; Peters, W.; Slutsky, A.S.; Stewart, T.E. ARDS in patients with thermal injury. Intensive Care Med. 1999, 25, 1231–1236. [Google Scholar] [CrossRef]
- Sine, C.R.; Belenkiy, S.M.; Henderson, J.L.; Aden, J.K.; Batchinsky, A.; Cancio, L.C.; Chung, K.K.; Buel, A.R.; Waters, J.A.; Lundy, J.B.; et al. Acute respiratory distress syndrome in burn patients: A comparison of the Berlin and American-European definitions. J. Burn Care Res. 2016, 37, e461–e469. [Google Scholar] [CrossRef]
- Pruitt, B.A.; Flemma, R.J.; DiVincenti, F.C.; Foley, F.D.; Mason, A.D.; Young, W.G., Jr. Pulmonary complications in burn patients. A comparative study of 697 patients. J. Thorac. Cardiovasc. Surg. 1970, 59, 7–20. [Google Scholar] [CrossRef]
- Tranbaugh, R.F.; Elings, V.B.; Christensen, J.M.; Lewis, F.R. Effect of inhalation injury on lung water accumulation. J. Trauma Inj. Infect. Crit. Care 1983, 23, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Driscoll, I.M.-S.E.; Pamplin, J.; Cancio, L. Joint Trauma System, United States of America Department of Defense: 2016. Burn Care (CPG ID: 12). Available online: https://jts.amedd.army.mil/assets/docs/cpgs/Burn_Care_11_May_2016_ID12.pdf (accessed on 24 August 2021).
- Herndon, D.N. Total Burn Care; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Demling, R.H. The burn edema process: Current concepts. J. Burn. Care Rehabil. 2005, 26, 207–227. [Google Scholar]
- Acute Respiratory Distress Syndrome, N.; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef]
- Amato, M.B.P.; Barbas, C.; Medeiros, D.M.; Magaldi, R.B.; Schettino, G.P.; Lorenzi-Filho, G.; Kairalla, R.; Deheinzelin, D.; Munoz, C.; Oliveira, R.; et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med. 1998, 338, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Brower, R.G.; Lanken, P.N.; MacIntyre, N.; Matthay, M.A.; Morris, A.; Ancukiewicz, M.; Schoenfeld, D.; Thompson, B.T. Higher versus Lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 2004, 351, 327–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marini, J.J.; Jaber, S. Dynamic predictors of VILI risk: Beyond the driving pressure. Intensive Care Med. 2016, 42, 1597–1600. [Google Scholar] [CrossRef] [Green Version]
- Albright, J.M.; Davis, C.S.; Bird, M.D.; Ramirez, L.; Kim, H.; Burnham, E.L.; Gamelli, R.L.; Kovacs, E.J. The acute pulmonary inflammatory response to the graded severity of smoke inhalation injury. Crit. Care Med. 2012, 40, 1113–1121. [Google Scholar] [CrossRef] [Green Version]
- Head, J.M. Inhalation injury in burns. Am. J. Surg. 1980, 139, 508–512. [Google Scholar] [CrossRef]
- Glas, G.J.; Horn, J.; Van Der Hoeven, S.M.; Hollmann, M.W.; Cleffken, B.; Colpaert, K.; Juffermans, N.P.; Knape, P.; Loef, B.G.; Mackie, D.P.; et al. Changes in ventilator settings and ventilation–induced lung injury in burn patients—A systematic review. Burns 2019, 46, 762–770. [Google Scholar] [CrossRef] [Green Version]
- Palazzo, S.; James-Veldsman, E.; Wall, C.; Hayes, M.; Vizcaychipi, M. Ventilation strategies in burn intensive care: A retrospective observational study. Burn. Trauma 2014, 2, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Cioffi, W.G., Jr.; Rue, L.W. Diagnosis and treatment of inhalation injuries. Crit. Care Nurs. Clin. N. Am. 1991, 3, 191–198. [Google Scholar] [CrossRef]
- Pillow, J. High-frequency oscillatory ventilation: Mechanisms of gas exchange and lung mechanics. Crit. Care Med. 2005, 33, S135–S141. [Google Scholar] [CrossRef]
- Fan, E.; Del Sorbo, L.; Goligher, E.C.; Hodgson, C.L.; Munshi, L.; Walkey, A.J.; Adhikari, N.K.; Amato, M.B.; Branson, R.; Brower, R.G.; et al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2017, 195, 1253–1263. [Google Scholar] [CrossRef]
- Narendra, D.K.; Hess, D.R.; Sessler, C.N.; Belete, H.M.; Guntupalli, K.K.; Khusid, F.; Carpati, C.M.; Astiz, M.E.; Raoof, S. Update in management of severe hypoxemic respiratory failure. Chest 2017, 152, 867–879. [Google Scholar] [CrossRef]
- Gupta, P.; Green, J.W.; Tang, X.; Gall, C.M.; Gossett, J.M.; Rice, T.B.; Kacmarek, R.M.; Wetzel, R.C. Comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. JAMA Pediatr. 2014, 168, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Rowan, C.M.; Cristea, O.; Greathouse, S.T.; Coleman, J.J.; Nitu, M.E. Preemptive use of high-frequency oscillatory ventilation in pediatric burn patients. J. Burn Care Res. 2013, 34, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Greathouse, S.T.; Hadad, I.; Zieger, M.; Nitu, M.; Rowan, C.M.; Coleman, J.J. High-frequency oscillatory ventilators in burn patients: Experience of riley hospital for children. J. Burn Care Res. 2012, 33, 425–435. [Google Scholar] [CrossRef]
- Jackson, M.P.; Philp, B.; Murdoch, L.J.; Powell, B.W.E.M. High frequency oscillatory ventilation successfully used to treat a severe paediatric inhalation injury. Burns 2002, 28, 509–511. [Google Scholar] [CrossRef]
- Sen, S. Pediatric inhalation injury. Burn. Trauma 2017, 5, 31. [Google Scholar] [CrossRef]
- Stock, M.C.; Downs, J.B.; Frolicher, D.A. Airway pressure release ventilation. Crit. Care Med. 1987, 15, 462–466. [Google Scholar] [CrossRef]
- Habashi, N.M. Other approaches to open-lung ventilation: Airway pressure release ventilation. Crit. Care Med. 2005, 33, S228–S240. [Google Scholar] [CrossRef]
- Fredericks, A.S.; Bunker, M.P.; Gliga, L.A.; Ebeling, C.G.; Ringqvist, J.R.; Heravi, H.; Manley, J.; Valladares, J.; Romito, B.T. Airway pressure release ventilation: A review of the evidence, theoretical benefits, and alternative titration strategies. Clin. Med. Insights Circ. Respir. Pulm. Med. 2020, 14, 1179548420903297. [Google Scholar] [CrossRef]
- Jain, S.V.; Kollisch-Singule, M.; Sadowitz, B.; Dombert, L.; Satalin, J.; Andrews, P.; Gatto, L.A.; Nieman, G.F.; Habashi, N.M. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med. Exp. 2016, 4, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kollisch-Singule, M.; Andrews, P.; Satalin, J.; Gatto, L.A.; Nieman, G.F.; Habashi, N.M. The time-controlled adaptive ventilation protocol: Mechanistic approach to reducing ventilator-induced lung injury. Eur. Respir. Rev. 2019, 28, 180126. [Google Scholar] [CrossRef] [PubMed]
- Bell, L. ICU Liberation: The Power of Pain Control, Minimal Sedation, and Early Mobility; Balas, M., Clemmer, T., Hargett, K., Eds.; Society of Critical Care Medicine: Mount Prospect, IL, USA, 2015. [Google Scholar]
- Girard, T.D.; Kress, J.P.; Fuchs, B.D.; Thomason, J.W.; Schweickert, W.D.; Pun, B.T.; Taichman, D.B.; Dunn, J.G.; Pohlman, A.S.; Kinniry, P.A.; et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): A randomised controlled trial. Lancet 2008, 371, 126–134. [Google Scholar] [CrossRef]
- Lee, Y.-L.L.; Sims, K.D.; Butts, C.C.; Frotan, M.A.; Kahn, S.; Brevard, S.B.; Simmons, J.D. The combination of SAT and SBT protocols may help reduce the incidence of ventilator-associated pneumonia in the burn intensive care unit. J. Burn Care Res. 2017, 38, e574–e579. [Google Scholar] [CrossRef]
- Ouellette, D.R.; Patel, S.; Girard, T.; Morris, P.E.; Schmidt, G.A.; Truwit, J.D.; Alhazzani, W.; Burns, S.M.; Epstein, S.K.; Esteban, A.; et al. Liberation from mechanical ventilation in critically ill adults: An Official American College of Chest Physicians/American Thoracic Society Clinical Practice Guideline: Inspiratory Pressure augmentation during spontaneous breathing trials, protocols minimizing sedation, and noninvasive ventilation immediately after extubation. Chest 2017, 151, 166–180. [Google Scholar] [CrossRef] [Green Version]
- Smailes, S.T.; McVicar, A.; Martin, R. Cough strength, secretions and extubation outcome in burn patients who have passed a spontaneous breathing trial. Burns 2013, 39, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Smailes, S.T.; Martin, R.V.; McVicar, A.J. The incidence and outcome of extubation failure in burn intensive care patients. J. Burn Care Res. 2009, 30, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Frutos-Vivar, F.; Ferguson, N.; Esteban, A.; Epstein, S.K.; Arabi, Y.; Apezteguía, C.; González, M.; Hill, N.S.; Nava, S.; D’Empaire, G.; et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest 2006, 130, 1664–1671. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, V.; Dravid, R.M.; Patel, A.; Swampillai, C.; Higgs, A. Difficult airway society guidelines for the management of tracheal extubation. Anaesthesia 2012, 67, 318–340. [Google Scholar] [CrossRef]
- Sturgess, D.J.; Greenland, K.B.; Senthuran, S.; Ajvadi, F.A.; Van Zundert, A.; Irwin, M. Tracheal extubation of the adult intensive care patient with a predicted difficult airway—A narrative review. Anaesthesia 2017, 72, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Hernández, G.; Vaquero, C.; González, P.; Subira, C.; Frutos-Vivar, F.; Rialp, G.; Laborda, C.; Colinas, L.; Cuena, R.; Fernandez, R. Effect of postextubation high-flow nasal cannula vs conventional oxygen therapy on reintubation in low-risk patients: A randomized clinical trial. JAMA 2016, 315, 1354–1361. [Google Scholar] [CrossRef]
- Hernández, G.; Vaquero, C.; Colinas, L.; Cuena, R.; González, P.; Canabal, A.; Sanchez, S.; Rodriguez, M.L.; Villasclaras, A.; Fernandez, R. Effect of postextubation high-flow nasal cannula vs noninvasive ventilation on reintubation and postextubation respiratory failure in high-risk patients: A randomized clinical trial. JAMA 2016, 316, 1565–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterworth, J.F.; Wasnick, J.D.; Mackey, D.C. Morgan and Mikhail’s Clinical Anesthesiology, 5th ed.; McGraw-Hill Education: New York, NY, USA, 2013. [Google Scholar]
- Jaber, S.; Chanques, G.; Jung, B.; Riou, B. Postoperative noninvasive ventilation. Anesthesiology 2010, 112, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Endorf, F.W.; Dries, D.J. Noninvasive ventilation in the burned patient. J. Burn Care Res. 2010, 31, 217–228. [Google Scholar] [CrossRef]
- Amato, M.B.P.; Meade, M.O.; Slutsky, A.S.; Brochard, L.; Costa, E.L.V.; Schoenfeld, D.A.; Stewart, T.E.; Briel, M.; Talmor, D.S.; Mercat, A.; et al. Driving pressure and survival in the acute respiratory distress syndrome. N. Engl. J. Med. 2015, 372, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Glossop, A.J.; Shepherd, N.; Bryden, D.C.; Mills, G. Non-invasive ventilation for weaning, avoiding reintubation after extubation and in the postoperative period: A meta-analysis. Br. J. Anaesth. 2012, 109, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Spoletini, G.; Alotaibi, M.; Blasi, F.; Hill, N.S. Heated humidified high-flow nasal oxygen in adults: Mechanisms of action and clinical implications. Chest 2015, 148, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Maggiore, S.M.; Idone, F.A.; Vaschetto, R.; Festa, R.; Cataldo, A.; Antonicelli, F.; Montini, L.; De Gaetano, A.; Navalesi, P.; Antonelli, M. Nasal high-flow versus venturi mask oxygen therapy after extubation. Effects on oxygenation, comfort, and clinical outcome. Am. J. Respir. Crit. Care Med. 2014, 190, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Roca, O.; Riera, J.; Torres, F.; Masclans, J.R. High-flow oxygen therapy in acute respiratory failure. Respir. Care 2010, 55, 408–413. [Google Scholar]
- Hasani, A.; Chapman, T.; McCool, D.; Smith, R.; Dilworth, J.; Agnew, J. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis. Chronic Respir. Dis. 2008, 5, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.; Rankin, N.; Smith, T.; Galler, D.; Seakins, P. Relationship between the humidity and temperature of inspired gas and the function of the airway mucosa. Crit. Care Med. 1996, 24, 1920–1929. [Google Scholar] [CrossRef]
- Dysart, K.; Miller, T.L.; Wolfson, M.R.; Shaffer, T.H. Research in high flow therapy: Mechanisms of action. Respir. Med. 2009, 103, 1400–1405. [Google Scholar] [CrossRef] [Green Version]
- Frizzola, M.; Miller, T.L.; Rodriguez, M.E.; Zhu, Y.; Rojas, J.; Hesek, A.; Stump, A.; Shaffer, T.H.; Dysart, K. High-flow nasal cannula: Impact on oxygenation and ventilation in an acute lung injury model. Pediatr. Pulmonol. 2011, 46, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.K.; Rhie, R.Y.; Lundy, J.B.; Cartotto, R.; Henderson, E.; Pressman, M.A.; Joe, V.C.; Aden, J.K.; Driscoll, I.R.; Faucher, L.D.; et al. A survey of mechanical ventilator practices across burn centers in North America. J. Burn Care Res. 2016, 37, e131–e139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Spontaneous Awakening Trial (SAT) Safety Screen [38,40] Actively receiving neuromuscular blockers (paralytics)? Increased ICP at time of SAT? Any medical intervention to reduce ICP in previous 24 h (ex: mannitol, hypertonic saline bolus, barbiturates)? Presence of myocardial ischemia in previous 24 h? Actively on Hypothermia Protocol? Pre-existing ventilatory dependence prior to admission? Planned transport out of ICU in subsequent 4 h? Receiving sedative infusions for active seizures or alcohol withdrawal? Actively requiring vasopressors? Mechanically restrained? |
Spontaneous Breathing Trial (SBT) Parameters [38,40] ‡ Sustained anxiety, agitation, or pain? RR > 35 for >5 min BPM? SpO2 < 88% for >5 min? SBP > 200 or <90 mmHg; DBP > 100 or <30 mmHg; MAP > 140 or <60 mmHg? ICP > 20 mmHg? Acute dysrhythmia? Existing safety concerns by any member of healthcare team? Presence of two or more signs of respiratory distress? ¶ Actively requiring vasopressors? Mechanically restrained? Rapid shallow breathing index (RSBI) ≤ 105? Negative inspiratory force (NIF) < −30 cm H2O? Patient intrinsic tidal volume < 4 mL/kg ideal body weight? Presence of acute or abrupt change in mental status from baseline? Presence of secretions requiring > hourly suctioning or copious amount of thick airway casts? Cough and gag reflex present? ≥25% endotracheal cuff leak? |
Age > 65 Years [47] |
---|
Heart Failure as primary indication for mechanical ventilation [47] |
Moderate-to-Severe COPD [47] |
APACHE II Score > 12 on day of extubation [47] |
BMI > 30 kg/m [41,47] |
Difficult or prolonged weaning [47] |
Mechanical ventilation > 7 days [41,47] |
Burn Shock with ongoing resuscitation |
>40% TBSA |
>20% TBSA mostly deep partial/full-thickness burns |
Inhalational Injury [47] |
Increased Volume Status (Na < 140) |
Cuff leak < 25% |
Requiring suctioning equal or more frequently than hourly |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Folwell, J.S.; Basel, A.P.; Britton, G.W.; Mitchell, T.A.; Rowland, M.R.; Cindass, R.; Lowery, D.R.; Williams, A.M.; Lidwell, D.S.; Hong, L.; et al. Mechanical Ventilation Strategies in the Critically Ill Burn Patient: A Practical Review for Clinicians. Eur. Burn J. 2021, 2, 140-151. https://doi.org/10.3390/ebj2030011
Folwell JS, Basel AP, Britton GW, Mitchell TA, Rowland MR, Cindass R, Lowery DR, Williams AM, Lidwell DS, Hong L, et al. Mechanical Ventilation Strategies in the Critically Ill Burn Patient: A Practical Review for Clinicians. European Burn Journal. 2021; 2(3):140-151. https://doi.org/10.3390/ebj2030011
Chicago/Turabian StyleFolwell, Jared S, Anthony P Basel, Garrett W Britton, Thomas A Mitchell, Michael R Rowland, Renford Cindass, David R Lowery, Alicia M Williams, David S Lidwell, Linda Hong, and et al. 2021. "Mechanical Ventilation Strategies in the Critically Ill Burn Patient: A Practical Review for Clinicians" European Burn Journal 2, no. 3: 140-151. https://doi.org/10.3390/ebj2030011
APA StyleFolwell, J. S., Basel, A. P., Britton, G. W., Mitchell, T. A., Rowland, M. R., Cindass, R., Lowery, D. R., Williams, A. M., Lidwell, D. S., Hong, L., Nam, J. J., Lundy, J. B., Pamplin, J. C., & Cancio, L. C. (2021). Mechanical Ventilation Strategies in the Critically Ill Burn Patient: A Practical Review for Clinicians. European Burn Journal, 2(3), 140-151. https://doi.org/10.3390/ebj2030011