Enhancing Quality of Life After Partial Brachial Plexus Injury Combining Targeted Sensory Reinnervation and AI-Controlled User-Centered Prosthesis: A Case Study
Abstract
1. Introduction
2. Material and Methods
2.1. User Presentation
“I have decided to take the most important decision of my life: I have amputated my hand. It was a very difficult choice, but an essential one for the improvement of my physical performance and for arriving especially at the Paralympics Winter Games Milan-Cortina at 100% of my potential.”
2.2. Surgical Intervention: Targeted Sensory Reinnervation
“Thanks to the state-of-the-art surgery, I was able to regain sensitivity; in addition, very strong signals coming from the forearm muscles allow me to move a myoelectric hand.”
2.3. Choice of the Prosthetic Device: The Adam’s Hand
“When I tried Adam’s Hand for the first time, it was something incredible, perhaps one of the strongest emotions of my life. To be able to move a hand after 15 years is something magical.”
3. Results
3.1. Clinical Results
“In daily life, I’ve gone back to using the Adam’s Hand as if it were my natural one, supporting my left limb to grab, grasp, lift, pull, and so on. In short, it’s truly a return to my origins”
3.2. OPUS and DASH Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ulTSR | Upper Limb Targeted Sensory Reinnervation |
PLM | Phantom Limb Map |
ADLs | Activities of Daily Living |
IMU | Inertial Measurement Unit |
UEFS | Upper Extremity Functional Status |
OPUS | Orthotics and Prosthetics User’s Survey |
DASH | Disability of the Arm, Shoulder and Hand |
References
- Van Zyl, N.; Hahn, J.B.; Cooper, C.A.; Weymouth, M.D.; Flood, S.J.; Galea, M.P. Upper limb reinnervation in C6 tetraplegia using a triple nerve transfer: Case report. J. Hand Surg. Am. 2014, 39, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
- Hebert, J.S.; Elzinga, K.; Chan, K.M.; Olson, J.; Morhart, M. Updates in Targeted Sensory Reinnervation for Upper Limb Amputation. Curr. Surg. Rep. 2014, 2, 45. [Google Scholar] [CrossRef]
- Gardetto, A.; Müller-Putz, G.R.; Eberlin, K.R.; Bassetto, F.; Atkins, D.J.; Turri, M.; Peternell, G.; Neuper, O.; Ernst, J. Restoration of Genuine Sensation and Proprioception of Individual Fingers Following Transradial Amputation with Targeted Sensory Reinnervation as a Mechanoneural Interface. J. Clin. Med. 2025, 14, 417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Marasco, P.D.; Hebert, J.S.; Sensinger, J.W.; Shell, C.E.; Schofield, J.S.; Thumser, Z.C.; Nataraj, R.; Beckler, D.T.; Dawson, M.R.; Blustein, D.H.; et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 2018, 10, eaao6990. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Flor, H. Phantom-limb pain: Characteristics, causes, and treatment. Lancet Neurol. 2002, 1, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.A.; Miller, L.A.; Lipschutz, R.D.; Lock, B.A.; Stubblefield, K.; Marasco, P.D.; Zhou, P.; Dumanian, G.A. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: A case study. Lancet 2007, 369, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Deirdre, M. Desmond, Coping, affective distress, and psychosocial adjustment among people with traumatic upper limb amputations. J. Psychosom. Res. 2007, 62, 15–21. [Google Scholar] [CrossRef]
- Serino, A.; Akselrod, M.; Salomon, R.; Martuzzi, R.; Blefari, M.L.; Canzoneri, E.; Rognini, G.; van der Zwaag, W.; Iakova, M.; Luthi, F.; et al. Upper limb cortical maps in amputees with targeted muscle and sensory reinnervation. Brain 2017, 140, 2993–3011. [Google Scholar] [CrossRef]
- Zappatore, G.A.; Reina, G.; Messina, A. Adam’s Hand: An Underactuated Robotic End-Effector. In Advances in Italian Mechanism Science. Mechanisms and Machine Science; Springer: Cham, Switzerland, 2017; Volume 47. [Google Scholar] [CrossRef]
- Grazioso, A.; Potenza, D.C.; Zappatore, G.A.; Reina, G. Performance Analysis of the Underactuated Finger for Adam’s Hand. IEEE Access 2024, 12, 149492–149501. [Google Scholar] [CrossRef]
- Heinemann, A.W.; Bode, R.; O’Reilly, C. Development and measurement properties of the Orthotics and Prosthetics Users’ Survey (OPUS): A comprehensive set of clinical outcome instruments. Prosthet. Orthot. Int. 2003, 27, 191–206. [Google Scholar] [CrossRef]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an upper extremity outcome measure: The DASH (disabilities of the arm, shoulder and hand) [corrected]. The Upper Extremity Collaborative Group (UECG). Am. J. Ind. Med. 1996, 29, 602–608, Erratum in Am. J. Ind. Med. 1996, 30, 372. [Google Scholar] [CrossRef] [PubMed]
- Shirley Ryan Ability Lab. OPUS UP Scoring Guide. Rehabilitation Measures Database. 2016. Available online: https://www.sralab.org/sites/default/files/2017-12/OPUS%20UP%20Scoring%20Guide%206%20June%202016.pdf (accessed on 10 July 2025).
- The DASH Outcome Measure. Available online: https://dash.iwh.on.ca/about-dash (accessed on 10 July 2025).
- Biddiss, E.A.; Chau, T.T. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 2007, 31, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Santello, M.; Flanders, M.; Soechting, J.F. Postural hand synergies for tool use. J. Neurosci. 1998, 18, 10105–10115. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Widehammar, C.; Hiyoshi, A.; Lidström Holmqvist, K.; Lindner, H.; Hermansson, L. Effect of multi-grip myoelectric prosthetic hands on daily activities, pain-related disability and prosthesis use compared with single-grip myoelectric prostheses: A single-case study. J. Rehabil. Med. 2022, 54, jrm00245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hruby, L.A.; Gstoettner, C.; Sturma, A.; Salminger, S.; Mayer, J.A.; Aszmann, O.C. Bionic Upper Limb Reconstruction: A Valuable Alternative in Global Brachial Plexus Avulsion Injuries-A Case Series. J. Clin. Med. 2019, 9, 23. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Raspopovic, S.; Capogrosso, M.; Petrini, F.M.; Bonizzato, M.; Rigosa, J.; Di Pino, G.; Carpaneto, J.; Controzzi, M.; Boretius, T.; Fernandez, E.; et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 2014, 6, 222ra19. [Google Scholar] [CrossRef] [PubMed]
- Valle, G.; Mazzoni, A.; Iberite, F.; D’aNna, E.; Strauss, I.; Granata, G.; Controzzi, M.; Clemente, F.; Rognini, G.; Cipriani, C.; et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron 2018, 100, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Petrini, F.M.; Bumbasirevic, M.; Valle, G.; Ilic, V.; Mijović, P.; Čvančara, P.; Barberi, F.; Katic, N.; Bortolotti, D.; Andreu, D.; et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 2019, 25, 1356–1363. [Google Scholar] [CrossRef]
- Tarantino, S.; Clemente, F.; Barone, D.; Controzzi, M.; Cipriani, C. The myokinetic control interface: Tracking implanted magnets as a means for prosthetic control. Sci. Rep. 2017, 7, 17149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrese, J.C.; Rao, N.; Paroo, K.; Triebwasser, C.; Vargas-Irwin, C.; Franquemont, L.; Donoghue, J.P. Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates. J. Neural Eng. 2013, 10, 066014. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Franzke, A.W.; Kristoffersen, M.B.; Bongers, R.M.; Murgia, A.; Pobatschnig, B.; Unglaube, F.; van der Sluis, C.K.; Wood, G. Users’ and therapists’ perceptions of myoelectric multifunction upper limb prostheses with conventional and pattern recognition control. PLoS ONE 2019, 14, e0220899. [Google Scholar] [CrossRef] [PubMed]
- Kyberd, P.J.; Poulton, A. Use of Accelerometers in the Control of Practical Prosthetic Arms. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1884–1891. [Google Scholar] [CrossRef] [PubMed]
- Kyberd, P.J.; Evans, M. Intelligent Control of a Prosthetic Hand. In Proceedings of the 4th European Conference for the Advancement of Assistive Technology (AAATE’97), Thessaloniki, Greece, 29 September–2 October 1997. [Google Scholar]
- Atkins, D.J.; Sturma, A. Principles of Occupational and Physical Therapy in Upper Limb Amputations. In Bionic Limb Reconstruction; Farina, D., Aszmann, O.C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Latour, D. Prosthetic User-Satisfaction and Client-Centered Feedback Form. In Proceedings of the Myoelectric Controls Symposium (MEC), Fredericton, NB, Canada, 15–18 August 2017. [Google Scholar]
- Kerver, N.; van Twillert, S.; Maas, B.; van der Sluis, C.K. User-relevant factors determining prosthesis choice in persons with major unilateral upper limb defects: A meta-synthesis of qualitative literature and focus group results. PLoS ONE 2020, 15, e0234342. [Google Scholar] [CrossRef]
- Chadwell, A.; Diment, L.; Micó-Amigo, M.; Ramírez, D.Z.M.; Dickinson, A.; Granat, M.; Kenney, L.; Kheng, S.; Sobuh, M.; Ssekitoleko, R.; et al. Technology for monitoring everyday prosthesis use: A systematic review. J. Neuroeng. Rehabil. 2020, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Hussaini, A.; Kyberd, P.; Mulindwa, B.; Ssekitoleko, R.; Keeble, W.; Kenney, L.; Howard, D. 3D Printing in LMICs: Functional Design for Upper Limb Prosthetics in Uganda. Prosthesis 2023, 5, 130–147. [Google Scholar] [CrossRef]
Patient Data | Field |
---|---|
Age | 33 y/o |
Sex | Male |
Type of injury | Partial Brachial Plexus Lesion right arm |
Treatment | Elective Transradial Amputation and ulTSR |
Vocation | National Paralympic Snowboard Cross Athlete |
Time Since Delivery | OPUS Raw Score | OPUS Rasch Measures * | OPUS Standard Error | DASH Raw Score | DASH Dis/Sym Score |
---|---|---|---|---|---|
6 months | 30 | 40.40 | 1.92 | 75 | 37.50 |
18 months | 68 | 56.45 | 2.21 | 48 | 15.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardetto, A.; Atkins, D.J.; Cannoletta, G.; Zappatore, G.A.; Carrabba, A. Enhancing Quality of Life After Partial Brachial Plexus Injury Combining Targeted Sensory Reinnervation and AI-Controlled User-Centered Prosthesis: A Case Study. Prosthesis 2025, 7, 111. https://doi.org/10.3390/prosthesis7050111
Gardetto A, Atkins DJ, Cannoletta G, Zappatore GA, Carrabba A. Enhancing Quality of Life After Partial Brachial Plexus Injury Combining Targeted Sensory Reinnervation and AI-Controlled User-Centered Prosthesis: A Case Study. Prosthesis. 2025; 7(5):111. https://doi.org/10.3390/prosthesis7050111
Chicago/Turabian StyleGardetto, Alexander, Diane J. Atkins, Giulia Cannoletta, Giovanni Antonio Zappatore, and Angelo Carrabba. 2025. "Enhancing Quality of Life After Partial Brachial Plexus Injury Combining Targeted Sensory Reinnervation and AI-Controlled User-Centered Prosthesis: A Case Study" Prosthesis 7, no. 5: 111. https://doi.org/10.3390/prosthesis7050111
APA StyleGardetto, A., Atkins, D. J., Cannoletta, G., Zappatore, G. A., & Carrabba, A. (2025). Enhancing Quality of Life After Partial Brachial Plexus Injury Combining Targeted Sensory Reinnervation and AI-Controlled User-Centered Prosthesis: A Case Study. Prosthesis, 7(5), 111. https://doi.org/10.3390/prosthesis7050111