The Design and Application of an Advanced System for the Diagnosis and Treatment of Flatfoot Based on Infrared Thermography and a Smart-Memory-Alloy-Reinforced Insole
Abstract
:1. Introduction
2. Materials and Method
2.1. Subjects
2.2. Equipment and Materials
2.2.1. Processing Computer
2.2.2. Nitinol Smart-Memory-Alloy Wires (SMAWs)
2.2.3. Evaluation of the NiTiCu Wires Insole
2.2.4. Polymer Plates from Ethylene Vinyl Acetate (EVA)
2.2.5. Infrared Thermography Detector
2.2.6. Silicone Rubber
2.3. Experimental Procedure and Study Design
2.4. Software System Design
2.5. Hardware System Design
2.6. SMA Placement Design
2.7. Data Analysis
3. Results
3.1. Qualitative Comparison of Normal and Flatfoot Subjects Before and After Testing
3.2. SolidWorks Results
3.3. Ansys Simulation Results
4. Discussion
5. Conclusions
Key Findings and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Hsu, W.-C.; Sugiarto, T.; Chen, J.-W.; Lin, Y.-J. The Design and Application of Simplified Insole-Based Prototypes with Plantar Pressure Measurement for Fast Screening of Flat-Foot. Sensors 2018, 18, 3617. [Google Scholar] [CrossRef]
- Farahpour, N.; Jafarnezhad, A.; Damavandi, M.; Bakhtiari, A.; Allard, P. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation. J. Biomech. 2016, 49, 1705–1710. [Google Scholar] [CrossRef]
- Alsaidi, F.A.; Moria, K.M. Flatfeet Severity-Level Detection Based on Alignment Measuring. Sensors 2023, 23, 8219. [Google Scholar] [CrossRef]
- Fawcus, H.B.; WAR Office (UK). Report on the Health of the Army for the Year 1931; H.M.S.O.: London, UK, 1933; pp. iv+158.
- Almutairi, A.F.; Mustafa, A.B.; Saidan, T.B.; Alhizam, S.; Salam, M. The prevalence and factors associated with low back pain among people with flat feet. Int. J. Gen. Med. 2021, 14, 3677–3685. [Google Scholar] [CrossRef]
- Dars, S.; Uden, H.; Banwell, H.A.; Kumar, S. The effectiveness of non-surgical intervention (Foot Orthoses) for paediatric flexible pes planus: A systematic review: Update. PLoS ONE 2018, 13, e0193060. [Google Scholar] [CrossRef]
- Ueki, Y.; Sakuma, E.; Wada, I. Pathology and management of flexible flat foot in children. J. Orthop. Sci. 2019, 24, 9–13. [Google Scholar] [CrossRef]
- Marouvo, J.; Sousa, F.; Fernandes, O.; Castro, M.A.; Paszkiel, S. Gait kinematics analysis of flatfoot adults. Appl. Sci. 2021, 11, 7077. [Google Scholar] [CrossRef]
- Cheng, K.-W.; Peng, Y.; Chen, T.L.-W.; Zhang, G.; Cheung, J.C.-W.; Lam, W.-K.; Wong, D.W.-C.; Zhang, M. A three-dimensional printed foot orthosis for flexible flatfoot: An exploratory biomechanical study on arch support reinforcement and undercut. Materials 2021, 14, 5297. [Google Scholar] [CrossRef]
- Cen, X.; Gao, L.; Yang, M.; Liang, M.; Bíró, I.; Gu, Y. Arch-support induced changes in foot-ankle coordination in young males with flatfoot during unplanned gait termination. J. Clin. Med. 2021, 10, 5539. [Google Scholar] [CrossRef]
- Galafate, D.; Pournajaf, S.; Condoluci, C.; Goffredo, M.; Di Girolamo, G.; Manzia, C.M.; Pellicciari, L.; Franceschini, M.; Galli, M. Bilateral foot orthoses elicit changes in gait kinematics of adolescents with down syndrome with flatfoot. Int. J. Environ. Res. Public Health 2020, 17, 4994. [Google Scholar] [CrossRef]
- Renganathan, G.; Barnamehei, H.; Das, S.; Kurita, Y. Effect of Wearing Running Shoes on Lower Limb Kinematics by Using OpenSim Simulation Software. Actuators 2022, 11, 152. [Google Scholar] [CrossRef]
- Chen, K.C.; Chen, Y.C.; Yeh, C.J.; Hsieh, C.L.; Wang, C.H. The effect of insoles on symptomatic flatfoot in preschool-aged children: A prospective 1-year follow-up study. Medicine 2019, 98, e17074. [Google Scholar] [CrossRef]
- Bednarczyk, E.; Sikora, S.; Kossobudzka-Górska, A.; Jankowski, K.; Hernandez-Rodriguez, Y. Understanding flat feet: An in-depth analysis of orthotic solutions. J. Orthop. Rep. 2024, 3, 100250. [Google Scholar] [CrossRef]
- Evans, A.M.; Rome, K.; Carroll, M.; Hawke, F. Foot orthoses for treating paediatric flat feet. Cochrane Database Syst. Rev. 2022, 2022, CD006311. [Google Scholar] [CrossRef]
- Zhou, X.; Zeng Qi Liao, Z.; Lu, P.; Zou, J.; Li, S.; Huang, G. Application of customized orthopedic insoles in the treatment of flatfoot. Chin. J. Tissue Eng. Res. 2022, 26, 4587–4592. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, D.; Ying, J.; Chu, P.; Qian, Y.; Chen, W. Design and preliminary validation of individual customized insole for adults with flexible flatfeet based on the plantar pressure redistribution. Sensors 2021, 21, 1780. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Kotz, R.; Ledl, T.; Hauser, G.; Sluga, M. Prevalence of flat foot in preschool-aged children. Pediatrics 2006, 118, 634–639. [Google Scholar] [CrossRef]
- Nikolaidou, M.E.; Boudolos, K.D. A footprint-based approach for the rational classification of foot types in young schoolchildren. Foot 2006, 16, 82–90. [Google Scholar] [CrossRef]
- Boryczka-Trefler, A.; Kalinowska, M.; Szczerbik, E.; Stępowska, J.; Łukaszewska, A.; Syczewska, M. How to Define Pediatric Flatfoot: Comparison of 2 Methods: Foot Posture in Static and Dynamic Conditions in Children 5 to 9 Years Old. Foot Ankle Spec. 2023, 16, 43–49. [Google Scholar] [CrossRef]
- Kane, K. Foot Orthoses for Pediatric Flexible Flatfoot: Evidence and current practices among canadian physical therapists. Pediatr. Phys. Ther. 2015, 27, 53–59. [Google Scholar] [CrossRef]
- Vulcano, E.; Maccario, C.; Myerson, M.S. How to approach the pediatric flatfoot. World J. Orthop. 2016, 7, 1. [Google Scholar] [CrossRef]
- Halabchi, F.; Mazaheri, R.; Mirshahi, M.; Abbasian, L. Pediatric Flexible Flatfoot; Clinical Aspects and Algorithmic Approach. Iran. J. Pediatr. 2013, 23, 247. [Google Scholar]
- Aenumulapalli, A.; Kulkarni, M.M.; Gandotra, A.R. Prevalence of flexible flat foot in adults: A cross-sectional study. J. Clin. Diagn. Res. 2017, 11, AC17. [Google Scholar] [CrossRef]
- Hernandez, A.J.; Kimura, L.K.; Laraya, M.H.F.; Fávaro, E. Calculation of Staheli’s plantar arch index and prevalence of flat feet: A study with 100 children aged 5–9 years. Acta Ortop. Bras. 2007, 15, 68–71. [Google Scholar] [CrossRef]
- Chen, C.-H.; Huang, M.-H.; Chen, T.-W.; Weng, M.-C.; Lee, C.-L.; Wang, G.-J. The correlation between selected measurements from footprint and radiograph of flatfoot. Arch. Phys. Med. Rehabil. 2006, 87, 235–240. [Google Scholar] [CrossRef]
- Hawes, M.R.; Nachbauer, W.; Sovak, D.; Nigg, B.M. Footprint parameters as a measure of arch height. Foot Ankle 1992, 13, 22–26. [Google Scholar] [CrossRef]
- Vauhnik, R.; Turk, Z.; Pilih, I.A.; Mičetić-Turk, D. Intra-rater reliability of using the navicular drop test for measuring foot pronation. Hrvat. Športskomedicinski Vjesn. 2006, 21, 8–11. [Google Scholar]
- Queen, R.M.; Mall, N.A.; Hardaker, W.M.; Nunley, J.A. Describing the medial longitudinal arch using footprint indices and a clinical grading system. Foot Ankle Int. 2007, 28, 456–462. [Google Scholar] [CrossRef]
- Shaikh, S.; Jamdade, B.; Chanda, A. Effects of Customized 3D-Printed Insoles in Patients with Foot-Related Musculoskeletal Ailments—A Survey-Based Study. Prosthesis 2023, 5, 550–561. [Google Scholar] [CrossRef]
- Rattanasak, A.; Uthansakul, P.; Uthansakul, M.; Jumphoo, T.; Phapatanaburi, K.; Sindhupakorn, B.; Rooppakhun, S. Real-Time Gait Phase Detection Using Wearable Sensors for Transtibial Prosthesis Based on a kNN Algorithm. Sensors 2022, 22, 4242. [Google Scholar] [CrossRef] [PubMed]
- Urakov, A.; Nikityuk, D.; Kasatkin, A.; Lukoyanov, I. Infrared plantography as a method to evaluate the functional anatomy of the human foot. In Proceedings of the QIRT Council, Gdańsk, Poland, 4–8 July 2016. [Google Scholar] [CrossRef]
- Al-Omairi, H.R.; AL-Zubaidi, A.; Fudickar, S.; Hein, A.; Rieger, J.W. Hammerstein–Wiener Motion Artifact Correction for Functional Near-Infrared Spectroscopy: A Novel Inertial Measurement Unit-Based Technique. Sensors 2024, 24, 3173. [Google Scholar] [CrossRef] [PubMed]
- Benoussaad, M.; Sijobert, B.; Mombaur, K.; Coste, C.A. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors 2015, 16, 12. [Google Scholar] [CrossRef]
- Lorusso, F.; Gehrke, S.A.; Festa, F.; Scarano, A. Wearing Effect of Implant Steel Drills and Tappers for the Preparation of the Bone Osteotomies: An Infrared Thermal Analysis and Energy Dispersive Spectroscopy-Scanning Electron Microscopy (EDS-SEM) Study. Prosthesis 2022, 4, 679–694. [Google Scholar] [CrossRef]
- Raj, R.J.; Ashwini, C.A.; Ajoy, S.M. Flat Foot in 14–16 Years Old Adolescents and its Association with Bmi and Sports Activity. J. Clin. Diagn. Res. 2022, 16, AC01–AC05. [Google Scholar] [CrossRef]
- Atik, A. Flexible flatfootness. North. Clin. Istanb. 2014, 1, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Gül, Y.; Yaman, S.; Avcı, D.; Çilengir, A.H.; Balaban, M.; Güler, H. A Novel Deep Transfer Learning-Based Approach for Automated Pes Planus Diagnosis Using X-ray Image. Diagnostics 2023, 13, 1662. [Google Scholar] [CrossRef] [PubMed]
- Bobiński, A.; Tomczyk, Ł.; Pelc, M.; Chruścicki, D.A.; Śnietka, B.; Morasiewicz, P. Arthroereisis with a Talar Screw in Symptomatic Flexible Flatfoot in Children. J. Clin. Med. 2023, 12, 7475. [Google Scholar] [CrossRef]
- D’Andrea, D.; Milone, D.; Nicita, F.; Risitano, G.; Santonocito, D. Qualitative and Quantitative Evaluation of Different Types of Orthodontic Brackets and Archwires by Optical Microscopy and X-ray Fluorescence Spectroscopy. Prosthesis 2021, 3, 342–360. [Google Scholar] [CrossRef]
- Oğuzhan, Y.; Kemal, T.; Gökhan, Ç. Evaluate the Physical Fitness Levels of Turkish Primary School Male and Female Children Between 7–14 Ages. Sci. Mov. Health 2014, 14, 585–593. [Google Scholar]
- Bose, D.; Singh, G.; Gupta, S.; Chanda, A. Development of a Novel Customized Insole for Effective Pressure Offloading in Diabetic Patients. Prosthesis 2024, 6, 341–356. [Google Scholar] [CrossRef]
- Chhikara, K.; Sidhu, S.S.; Gupta, S.; Saharawat, S.; Kataria, C.; Chanda, A. Development and Effectiveness Testing of a Novel 3D-Printed Multi-Material Orthosis in Nurses with Plantar Foot Pain. Prosthesis 2023, 5, 73–87. [Google Scholar] [CrossRef]
- K N, C.; Eram, A.; Shetty, N.; Shetty, D.D.; Futane, M.; Keni, L.G. Evaluating Angled Abutments: Three-Dimensional Finite Element Stress Analysis of Anterior Maxillary Implants. Prosthesis 2024, 6, 315–328. [Google Scholar] [CrossRef]
- Juneja, S.; Miranda, G.; Eram, A.; Shetty, N.; K N, C.; Keni, L.G. Investigating the Influence of All-Ceramic Prosthetic Materials on Implants and Their Effect on the Surrounding Bone: A Finite Element Analysis. Prosthesis 2024, 6, 74–88. [Google Scholar] [CrossRef]
- Hamid, Q.Y.; Hasan, W.Z.W.; Hanim, M.A.A.; Nuraini, A.A.; Hamidon, M.N.; Ramli, H.R. Shape memory alloys actuated upper limb devices: A review. Sens. Actuators Rep. 2023, 5, 100160. [Google Scholar] [CrossRef]
- Pan, J.W.; Ho, M.Y.M.; Loh, R.B.C.; Shahril Iskandar, M.N.U.R.; Kong, P.W. Foot Morphology and Running Gait Pattern between the Left and Right Limbs in Recreational Runners. Phys. Act. Health 2023, 7, 43–52. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Wang, C.S.; Lin, K.W.; Chien, M.J.; Wei, S.H.; Chen, C.S. Biomechanical Analysis of the FlatFoot with Different 3D-Printed Insoles on the Lower Extremities. Bioengineering 2022, 9, 563. [Google Scholar] [CrossRef]
- Hoang, N.T.T.; Chen, S.; Chou, L.W. The impact of foot orthoses and exercises on pain and navicular drop for adult flatfoot: A network meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 8063. [Google Scholar] [CrossRef]
- Kao, E.F.; Lu, C.Y.; Wang, C.Y.; Yeh, W.C.; Hsia, P.K. Fully automated determination of arch angle on weight-bearing foot radiograph. Comput. Methods Programs Biomed. 2018, 154, 79–88. [Google Scholar] [CrossRef]
- Khan, F.; Chevidikunnan, M.F.; Alsobhi, M.G.; Ahmed, I.A.I.; Al-Lehidan, N.S.; Rehan, M.; Alalawi, H.A.; Abduljabbar, A.H. Diagnostic Accuracy of Various Radiological Measurements in the Evaluation and Differentiation of Flatfoot: A Cross-Sectional Study. Diagnostics 2022, 12, 2288. [Google Scholar] [CrossRef]
- Pita-Fernández, S.; González-Martín, C.; Seoane-Pillado, T.; López-Calviño, B.; Pértega-Díaz, S.; Gil-Guillén, V. Validity of footprint analysis to determine flatfoot using clinical diagnosis as the gold standard in a random sample aged 40 years and older. J. Epidemiol. 2015, 25, 148–154. [Google Scholar] [CrossRef]
Subjects’ Information | Normal Foot (No. = 8) | FFT (No. = 8) | ||
---|---|---|---|---|
Mean | ±Std | Mean | ±Std | |
Age (year) | 12.5 | 1.7728 | 11.625 | 3.1139 |
Weight (kg) | 49.75 | 13.26 | 48.237 | 18.722 |
Height (cm) | 155.6 | 8.484 | 146.5 | 15.042 |
Average shoe size (Euro) | 39.25 | 2.1876 | 37.125 | 3.907 |
S. No. | Age, Years/Gender | Weight, kg/ Length, cm | Shoe Size, EU | Temperature Medial TM − Lateral TL, °C for Both R.F./L.F. |
---|---|---|---|---|
SN1 | 11/Male | 55/159 | 40 | L5 − L3 = 33.41 − 33.23 = 0.18 L5 − L6 = 33.66 − 33.56 = 0.06 |
SN2 | 14/Male | 45/160 | 42 | L5 − L3 = 33.73 − 33.66 = 0.07 L3 − L5 = 33.35 − 33.16 = 0.19 |
SN3 | 12/Male | 42/145 | 40 | L5 − L3 = 32.1 − 31.93 = 0.17 L3 − L5 = 31.91 − 32.04 = −0.13 |
SN4 | 9/Male | 53/143 | 39 | L5 − L3 = 31.66 − 31.54 = 0.12 L3 − L5 = 30.48 − 30.06 = −0.12 |
SN5 | 14/Female | 40/155 | 38 | L5 − L3 = 37.16 − 37.29 = −0.13 L3 − L5 = 31.65 − 31.6 = 0.05 |
SN6 | 13/Male | 78/169 | 42 | L2 − L1 = 33.23 − 33.29 = −0.06 L2 − L1 = 33.23 − 33.29 = −0.06 |
SN7 | 14/Male | 50/154 | 38 | L5 − L3 = 29.73 − 29.6 = 0.13 L3 − L5 = 29.41 − 29.73 = −0.32 |
SN8 | 13/Female | 35/160 | 37 | L5 − L3 = 28.23 − 28.30 = −0.07 L3 − L5 = 28.85 − 28.66 = 0.19 |
Average Temperature, °C | 0.016875 °C |
S. No. | Age, Years/Gender | Weight, kg/Length, cm | Shoe Size, EU | Temperature Medial TM − Lateral TL Before Wearing Insole, °C | Temperature Medial TM − Lateral TL After Wearing Insole, °C |
---|---|---|---|---|---|
S1 | 9/Female | 39/133 | 35 | L2M30.54 − L1L29.23 = 1.31 | L2M30.41 − L1L30.73 = −0.32 |
S2 | 11/Male | 27.3/135 | 34 | L2M27.1 − L1L28.29 = 1.19 | L1L28.29 − L2M29.6 = −0.31 |
S3 | 7/Male | 24.6/126 | 31 | L5M27.16 − L3L25.91 = 1.25 | L5M26.48 − L3L27.48 = −1 |
S4 | 15/Female | 45/148 | 36 | L4M20.23 − L2L19.23 = 1 | L3M22.29 − L5L22.16 = 0.13 |
S5 | 10/Male | 71/160 | 39 | L5M27.41 − L3L26.16 = 1.25 | L5M25.35 − L3L25.6 = −0.25 |
S6 | 14/Female | 45/150 | 38 | L3M27.04 − L5L26.16 = 0.88 | L3M27.54 − L5L27.54 = 0 |
S7 | 16/Male | 75/172 | 43 | L4M28.85 − L2L27.85 = 1 | L4M28.23 − L2L28.96 = −0.75 |
S8 | 11/Male | 59/148 | 41 | L4M31.73 − L5L31.04 = 0.69 | L3M26.98 − L5L26.66 = 0.32 |
Average Temperatures | 1.07125 | 0.28375 |
S. No. | Age, Years/Gender | Weight, kg/Length, cm | Shoe Size, EU | Temperature Medial TM − Lateral TL After Wearing Insole, °C | Satisfaction Rate |
---|---|---|---|---|---|
S1 | 9/Female | 39/133 | 35 | L2M30.41 − L1L30.73 = −0.32 | 8 |
S2 | 11/Male | 27.3/135 | 34 | L1L28.29 − L2M29.6 = −0.31 | 9 |
S3 | 7/Male | 24.6/126 | 31 | L5M26.48 − L3L27.48 = −1 | 5 |
S4 | 15/Female | 45/148 | 36 | L3M22.29 − L5L22.16 = 0.13 | 10 |
S5 | 10/Male | 71/160 | 39 | L5M25.35 − L3L25.6 = −0.25 | 9 |
S6 | 14/Female | 45/150 | 38 | L3M27.54 − L5L27.54 = 0 | 10 |
S7 | 16/Male | 75/172 | 43 | L4M28.23 − L2L28.96 = −0.75 | 5 |
S8 | 11/Male | 59/148 | 41 | L3M26.98 − L5L26.66 = 0.32 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulkareem, A.F.; Al-Neami, A.Q.; Mohammed, T.J.; Al-Omairi, H.R. The Design and Application of an Advanced System for the Diagnosis and Treatment of Flatfoot Based on Infrared Thermography and a Smart-Memory-Alloy-Reinforced Insole. Prosthesis 2024, 6, 1491-1509. https://doi.org/10.3390/prosthesis6060108
Abdulkareem AF, Al-Neami AQ, Mohammed TJ, Al-Omairi HR. The Design and Application of an Advanced System for the Diagnosis and Treatment of Flatfoot Based on Infrared Thermography and a Smart-Memory-Alloy-Reinforced Insole. Prosthesis. 2024; 6(6):1491-1509. https://doi.org/10.3390/prosthesis6060108
Chicago/Turabian StyleAbdulkareem, Ali F., Auns Q. Al-Neami, Tariq J. Mohammed, and Hayder R. Al-Omairi. 2024. "The Design and Application of an Advanced System for the Diagnosis and Treatment of Flatfoot Based on Infrared Thermography and a Smart-Memory-Alloy-Reinforced Insole" Prosthesis 6, no. 6: 1491-1509. https://doi.org/10.3390/prosthesis6060108
APA StyleAbdulkareem, A. F., Al-Neami, A. Q., Mohammed, T. J., & Al-Omairi, H. R. (2024). The Design and Application of an Advanced System for the Diagnosis and Treatment of Flatfoot Based on Infrared Thermography and a Smart-Memory-Alloy-Reinforced Insole. Prosthesis, 6(6), 1491-1509. https://doi.org/10.3390/prosthesis6060108