Microbial Adhesion to Poly Methyl Methacrylate (PMMA) Denture Base Resins Containing Zinc Oxide (ZnO) Nanostructures: A Systematic Review of In Vitro Studies
Abstract
:1. Introduction
2. Materials and Methods
Quality Assessment and Risk of Bias of Included Studies
Ref | Denture Base Resin Type/Brand Name | ZnO Size and Brand Name | ZnO% | ZnO Treatment | Addition Method Monomer/Polymer | Specimen Shape and Dimensions/Aging | Sample Size | Microbial Species | Tested Properties | Assessment Method | Results and Outcome |
---|---|---|---|---|---|---|---|---|---|---|---|
Cierech M, et al. [19] | HP (PMMA)/Superacryl Plus, Spofa Dental, Czech Republic | 25–30 nm CHEMPUR, piekary śląskie Poland 25–30 nm | 0%wt 2%wt | Sedimented (washed with deionized water, centrifuged, and dried) | Monomer | 10 × 10 × 2 mm NS | N = 30 n = 15 | C. albicans, ATCC 14055 | Density MIC Roughness | CFU | ZnONPs display fungistatic or fungicidal activity and reduce C. albicans adhesion |
Cierech M, et al. [20] | HP (PMMA)/Superacryl Plus Spofa Dental, Czech Republic | 0%wt 2%wt | Salinization | Monomer | 10 × 10 × 2 mm NS | N = 30 n = 16 | C. albicans, ATCC 14056 | Anti-fungal morphology of cells | CFU | Significantly decreased C. albicans adhesion | |
Cierech M, et al. [21] | HP (PMMA)/Superacryl Plus Spofa Dental, Jicin, Czech Republic | 0% 2.5% 5% 7.5% | Nanowires are produced | Monomer | 13 × 13 × 2 mm NS | N = 20 n = 5 | C. albicans, ATCC 14057 | Zinc ions release Cytotoxicity to human cells | Optical emission spectrometry in inductively coupled plasma | ZnONPs prevent adhesion and biofilm development by C. albican | |
Kamonkhantikul K, et al. [22] | HP PMMA/Ivoclar Vivadent, Schaan, Liechtenstein | 20–40 nm Nano Materials Technology Co.Led. Chonburi, Thailand | 0% 1.25, 2.5, 5% wt | NS | Monomer | 12 × 2 mm water storage time in 37C deionized water for 48 h or 1 month before testing | N = 98 n = 8 | C. albicans, ATCC 90028 | Antifungal, optical, and mechanical properties | CFU | ZnONPs cause reduction in C. albicans adherence |
Apip C, et al. [23] | HP PMMA (MelioDent Heat Cure, Heareus Kulzer, Hanau, Germany) | 25–45 nm NS | 0 ppm Study: 250, 500, 1000 ppm | NS | ZnO-NWs were suspended in liquid monomer | 10 × 5 × 3 mm Water storage not mentioned | N = 80 | C. albicans, ATCC 10231 | Anti-biofilm activity | Transmission electron microscopy Raman mapping images and spectra | C. albicans adherence and biofilm formation considerably decreased with increasing ZnO-NWs concentrations in PMMA-ZnO-NW |
Anwander M, et al. [24] | AP (Palapress vario, Heraeus Kulzer GmbH, Hanau, Germany) | <100 nm Sigma-Aldrich Co., St. Louis, MO, USA | 0% 0.1, 0.2, 0.4, and 0.8 wt | NS | Monomer | 7 × 1.5 mm Stored in distilled water for 7 d prior to conducting the experiments | N = 60 n = 15 | C. albicans, ATCC 10232 | Roughness Biofilm formation Biomass | Energy-dispersive X-ray spectroscopy (EDX) | No statistically significant impact of available ZnO material on decreasing biofilm adhesion proven |
Raj I, et al. [25] | PMMA of analytical-grade quality was procured from Alfa Aeser, Haverhill, Massachusetts | 60 nm Sigma Aldrich, St. Luis, MO, USA | 0 1, 2, 5, 10, and 15 by wt | NS | Polymer | Film, 12 cm length, 8 cm width, and 2 mm thickness Thermal and water storage | Not mentioned 4 experiments and 5 groups | C. albicans, ATCC 10233 | Cytotoxicity Crystalline and morphological changes Density and abrasion resistance | Microscopically | ZnONP groups shows decrease in C. albicans adhesion and colonization |
3. Results
- Quality assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alqutaibi, A.Y.; Baik, A.; Almuzaini, S.A.; Farghal, A.E.; Alnazzawi, A.A.; Borzangy, S.; Aboalrejal, A.N.; AbdElaziz, M.H.; Mahmoud, I.I.; Zafar, M.S. Polymeric denture base materials: A review. Polymers 2023, 15, 3258. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef] [PubMed]
- Thu, K.M.; Yeung, A.W.K.; Samaranayake, L.; Lam, W.Y.H. Denture plaque biofilm visual assessment methods: A systematic review. Int. Dent. J. 2024, 74, 1–14. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fotovat, F.; Abbasi, S.; Nikanjam, S.; Alafchi, B.; Baghiat, M. Effects of various disinfectants on surface roughness and color stability of thermoset and 3D-printed acrylic resin. Eur. J. Transl. Myol. 2024, 34, 11701. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lopez, J.F.; Smith, R.L.; Gomez, M.J. Influence of surface roughness on bacterial adhesion to denture base materials. J. Prosthet. Dent. 2022, 127, 236–243. [Google Scholar]
- Budtz-Jorgensen, E. Clinical aspects of Candida infection in denture wearers. J. Am. Dent. Assoc. 1978, 96, 474–479. [Google Scholar] [CrossRef]
- McReynolds, D.E.; Moorthy, A.; Moneley, J.O.; Jabra-Rizk, M.A.; Sultan, A.S. Denture stomatitis—An interdisciplinary clinical review. J. Prosthodont. 2023, 32, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.D.D.D.; Nunes, T.S.B.S.; Viotto, H.E.D.C.; Coelho, S.R.G.; Souza, R.F.; Pero, A.C. Microbial adhesion and biofilm formation by Candida albicans on 3D-printed denture base resins. PLoS ONE 2023, 18, e0292430. [Google Scholar] [CrossRef]
- Barbeau, J.; Séguin, J.; Goulet, J.P.; de Koninck, L.; Avon, S.L.; Lalonde, B. Reassessing the presence of Candida albicans in denture-related stomatitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2003, 95, 51–59. [Google Scholar] [CrossRef]
- AL-Dwairi, Z.N.; Al-Quran, F.A.; Al-Omoush, S.A.; Baba, N.Z. Surface properties of denture base materials and their impact on the quality of life in complete denture wearers. J. Prosthodont. Res. 2020, 64, 31–37. [Google Scholar] [CrossRef]
- Gendreau, L.; Loewy, Z.G. Epidemiology and etiology of denture stomatitis. J. Prosthodont. 2011, 20, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Nevzatoğlu, E.U.; Ozcan, M.; Kulak-Ozkan, Y.; Kadir, T. Adherence of Candida albicans to denture base acrylics and silicone-based resilient liner materials with different surface finishes. Clin. Oral. Investig. 2007, 11, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.S.; Bavabeedu, S.S.; Quadri, S.A.; Gurumurthy, V.; Kanji, M.A.; Okshah, A.; Binduhayyim, R.I.H.; Alarcón-Sánchez, M.A.; Mosaddad, S.A.; Heboyan, A. Mapping the research landscape of nanoparticles and their use in denture base resins: A bibliometric analysis. Discov. Nano 2024, 19, 95. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, H.; Krithikadatta, J.; Doble, M. Local and systemic adverse effects of nanoparticles incorporated in dental materials: A critical review. Saudi Dent. J. 2024, 36, 158–167. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Djearamane, S.; Xiu, L.J.; Wong, L.S.; Rajamani, R.; Bharathi, D.; Kayarohanam, S.; De Cruz, A.E.; Tey, L.H.; Janakiraman, A.K.; Aminuzzaman, M.; et al. Antifungal properties of zinc oxide nanoparticles on Candida albicans. Coatings 2022, 12, 1864. [Google Scholar] [CrossRef]
- Reddy, G.K.K.; Padmavathi, A.R.; Nancharaiah, Y.V. Fungal infections: Pathogenesis, antifungals and alternate treatment approaches. Curr. Res. Microb. Sci. 2022, 3, 100137. [Google Scholar] [CrossRef]
- Ghannam, H.; Chahboun, A.; Turmine, M. Wettability of zinc oxide nanorod surfaces. RSC Adv. 2019, 9, 38289–38297. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Cierech, M.; Wojnarowicz, J.; Szmigiel, D.; Baczkowski, B.; Grudniak, A.M.; Wolska, K.I.; Lojkowski, W.; Mierzwinska-Nastalska, E. Preparation and characterization of ZnO-PMMA resin nano-composites for denture bases. Acta Bioeng. Biomech. 2014, 18, 2. [Google Scholar] [CrossRef]
- Cierech, M.; Klimek, L.; Trojanowska, I. Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation. Int. J. Pharm. 2016, 510, 323–335. [Google Scholar] [CrossRef]
- Cierech, M.; Wojnarowicz, J.; Kolenda, A.; Krawczyk-Balska, A.; Prochwicz, E.; Wozniak, B.; Lojkowski, W.; Mierzwinska-Nastalska, E. Zinc oxide nanoparticles cytotoxicity and release from newly formed PMMA–ZnO nanocomposites designed for denture bases. Nanomaterials 2019, 9, 1318. [Google Scholar] [CrossRef] [PubMed]
- Kamonkhantikul, K.; Arksornnukit, M.; Takahashi, H. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles. Int. J. Nanomedicine 2017, 12, 2353–2360. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Apip, C.; Wong, L.J.; Alhabeeb, A.; Houbraken, J.; Janakiraman, A.K.; Jayapalan, J. An in vitro study on the inhibition and ultrastructural alterations of Candida albicans biofilm by zinc oxide nanowires in a PMMA matrix. Saudi Dent. J. 2021, 33, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Anwander, M.; Rosentritt, M.; Schneider-Feyrer, S.; Hahnel, S. Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles. J. Adv. Prosthodont. 2017, 9, 482–485. [Google Scholar] [CrossRef]
- Raj, I.; Mozetic, M.; Jayachandran, V.P.; Jose, J.; Thomas, S.; Kalarikkal, N. Fracture resistant, antibiofilm adherent, self-assembled PMMA/ZnO nanoformulations for biomedical applications: Physico-chemical and biological perspectives of nanoreinforcement. Nanotechnology 2018, 29, 305704. [Google Scholar] [CrossRef]
- Gad, M.M.; Abu-Rashid, K.; Alkhaldi, A.; Alshehri, O.; Khan, S.Q. Evaluation of the effectiveness of bioactive glass fillers against Candida albicans adhesion to PMMA denture base materials: An in vitro study. Saudi Dent. J. 2022, 34, 730–737. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M. Current perspectives and the future of Candida albicans-associated denture stomatitis treatment. Dent. Med. Probl. 2020, 57, 95–102. [Google Scholar] [CrossRef]
- Nam, K.Y.; Lee, C.H.; Lee, C.J. Antifungal and physical characteristics of modified denture base acrylic incorporated with silver nanoparticles. Gerodontology 2012, 29, e413–e419. [Google Scholar] [CrossRef]
- Sharma, N.; Jandaik, S.; Singh, T.G.; Kumar, S. Chapter 14—Nanoparticles: Boon to mankind and bane to pathogens. In Nanobiomaterials in Antimicrobial Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 483–509. ISBN 9780323428644. [Google Scholar]
- Akay, C.; Avukat, E. Effect of nanoparticle addition on polymethylmethacrylate resins. Acta Sci. Dent. Sci. 2019, 3, 91–97. [Google Scholar]
- Szerszeń, M.; Cierech, M.; Wojnarowicz, J.; Górski, B.; Mierzwińska-Nastalska, E. Color stability of zinc oxide poly(methyl methacrylate) nanocomposite—A new biomaterial for denture bases. Polymers 2022, 14, 4982. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R.; Khan, S.Q. Hydrophobicity of Denture Base Resins: A Systematic Review and Meta-analysis. J. Int. Soc. Prev. Community Dent. 2022, 12, 139–159. [Google Scholar] [CrossRef] [PubMed]
Ref. | Sample Size Calculation | Sample Randomization | Control Group | Stating Clear Testing Method | Statistical Analyses Carried Out | Reliable Analytical Methods | Blinding of Evaluators | Risk of Bias |
---|---|---|---|---|---|---|---|---|
[19] | Yes | No | Yes | Yes | Yes | Yes | No | Medium |
[20] | Yes | No | Yes | Yes | Yes | Yes | No | Medium |
[21] | No | No | Yes | Yes | Yes | Yes | No | Medium |
[22] | Yes | Yes | Yes | Yes | Yes | Yes | No | Low |
[23] | Yes | No | Yes | Yes | Yes | No | No | Medium |
[24] | Yes | Yes | Yes | Yes | Yes | Yes | No | Low |
[25] | No | No | Yes | Yes | Yes | Yes | No | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majrashi, N.M.; Al Qattan, M.S.; AlMubarak, N.S.; Alzahir, K.Z.; Gad, M.M. Microbial Adhesion to Poly Methyl Methacrylate (PMMA) Denture Base Resins Containing Zinc Oxide (ZnO) Nanostructures: A Systematic Review of In Vitro Studies. Prosthesis 2024, 6, 1410-1419. https://doi.org/10.3390/prosthesis6060102
Majrashi NM, Al Qattan MS, AlMubarak NS, Alzahir KZ, Gad MM. Microbial Adhesion to Poly Methyl Methacrylate (PMMA) Denture Base Resins Containing Zinc Oxide (ZnO) Nanostructures: A Systematic Review of In Vitro Studies. Prosthesis. 2024; 6(6):1410-1419. https://doi.org/10.3390/prosthesis6060102
Chicago/Turabian StyleMajrashi, Nawal M., Mohammed S. Al Qattan, Noor S. AlMubarak, Kawther Zahar Alzahir, and Mohammed M. Gad. 2024. "Microbial Adhesion to Poly Methyl Methacrylate (PMMA) Denture Base Resins Containing Zinc Oxide (ZnO) Nanostructures: A Systematic Review of In Vitro Studies" Prosthesis 6, no. 6: 1410-1419. https://doi.org/10.3390/prosthesis6060102
APA StyleMajrashi, N. M., Al Qattan, M. S., AlMubarak, N. S., Alzahir, K. Z., & Gad, M. M. (2024). Microbial Adhesion to Poly Methyl Methacrylate (PMMA) Denture Base Resins Containing Zinc Oxide (ZnO) Nanostructures: A Systematic Review of In Vitro Studies. Prosthesis, 6(6), 1410-1419. https://doi.org/10.3390/prosthesis6060102