Translucent and Highly Toughened Zirconia Suitable for Dental Restorations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fracture Toughness
2.3. Opacity
2.4. Statistical Analysis
2.5. X-Ray Diffractometry
2.6. Translucency Parameter
3. Results
3.1. Fracture Toughness and Opacity
3.2. Multiple Regression Analysis
3.3. Microstructural Change
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Lawn, B.R. Novel zirconia materials in dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Pekkan, G.; Pekkan, K.; Bayindir, B.Ç.; Özcan, M.; Karasu, B. Factors affecting the translucency of monolithic zirconia ceramics: A review from materials science perspective. Dent. Mater. J. 2020, 39, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ban, S. Classification and properties of dental zirconia as implant fixtures and superstructures. Materials 2021, 14, 4879. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, J. What future for zirconia as a biomaterials? Biomaterials 2006, 27, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Vasanthabel, S.; Kannan, S. Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions. J. Phys. Chem. Solids 2018, 112, 100–105. [Google Scholar] [CrossRef]
- Ban, S. Chemical durability of high translucent dental zirconia. Dent. Mater. J. 2020, 39, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.; Shimada, M. Transformation of ceria-doped tetragonal zirconia polycrystal by annealing in water. Am. Ceram. Soc. Bull. 1985, 64, 1382–1384. [Google Scholar]
- Bechepeche, A.P.; Treu, O.; Longo, E.; Paiva-Santos, C.O.; Varela, J.A. Experimental and theoretical aspects of the stabilization of zirconia. J. Mater. Sci. 1999, 34, 2751–2756. [Google Scholar] [CrossRef]
- Ban, S.; Sato, H.; Suehiro, Y.; Nakanishi, H.; Nawa, M. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 87, 492–498. [Google Scholar] [CrossRef]
- Tsubakino, H.; Sonoda, K.; Nozato, R. Martensite transformation behavior during isothermal aging in partially stabilized zirconia with and without alumina addition. J. Mater. Sci. Lett. 1993, 12, 196–198. [Google Scholar] [CrossRef]
- Corman, G.S.; Stubican, V.S. Phase equilibria and ionic conductivity in the system ZrO2−Yb2O3−Y2O3. J. Am. Ceram. Soc. 1985, 68, 174–181. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, D.-J.; Cho, K.-S. Mechanical properties of hot-pressed TZP ceramics doped with Y2O3 and Nb2O5. Mater. Trans. JIM 1998, 39, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-J.; Jung, H.-J.; Jang, J.-W.; Lee, H.-L. Fracture toughness, ionic conductivity, and low-temperature phase stability of tetragonal codoped with yttria and niobium oxide. J. Am. Ceram. Soc. 1998, 81, 2309–2314. [Google Scholar] [CrossRef]
- Lee, D.Y.; Kim, D.-J.; Cho, D.-H. Low temperature phase stability and mechanical properties of Y2O3- and Nb2O5-co-doped tetragonal polycrystal ceramics. J. Mater. Sci. Lett. 1998, 17, 185–187. [Google Scholar] [CrossRef]
- Pineda, R.M.G.; Salvador, M.D.; Gutiérrez-González, C.F.; Catalá-Civera, J.M.; Borrell, A. Fabrication and characterization of Nb2O5-doped 3Y-TZP materials sintered by microwave technology. Int. J. Appl. Ceram. Technol. 2021, 18, 2032–2044. [Google Scholar]
- Lhajavi, P.; Xu, Y.; Frandsen, H.L.; Chevalier, J.; Gremillard, L.; Kiebach, R.; Hendriksen, P.V. Tetragonal phase stability maps of ceria-yttria co-doped zirconia: From powders to sintered ceramics. Ceram. Int. 2020, 46, 9396–9405. [Google Scholar]
- Gurak, M.; Flamant, Q.; Laversenne, L.; Clarke, D.R. On the yttrium tantalate-zirconia phase diagram. J. Eur. Ceram. Soc. 2018, 38, 3317–3324. [Google Scholar] [CrossRef]
- Bhattacharya, A.K.; Shklover, V.; Steuer, W.; Witz, G.; Bossmann, H.-P.; Fabrichnaya, O. Ta2O5-Y2O3-ZrO2 system: Experimental study and preliminary thermodynamic description. J. Eur. Ceram. Soc. 2011, 31, 249–257. [Google Scholar] [CrossRef]
- Kim, D.-J.; Tien, T.-Y. Phase stability and physical properties of cubic and tetragonal ZrO2 in the system ZrO2-Y2O3-Ta2O5. J. Am. Ceram. Soc. 1991, 74, 3061–3065. [Google Scholar] [CrossRef]
- Raghavan, S.; Wang, H.; Dimwiddie, R.B.; Porter, W.D.; Vaßen, R.; Stöver, D.; Mayo, M.J. Ta2O5/Nb2O5 and Y2O3 co-doped zirconias for thermal barrier coatings. J. Am. Ceram. Soc. 2004, 87, 431–437. [Google Scholar] [CrossRef]
- Luo, P.; Wu, X.; Xiao, W.; Zhang, F.; Wang, Y.; Huang, D.; Du, Y. Phase equilibria in the ZrO2-Ta2O5-Nb2O5 system: Experimental studies and thermodynamic modeling. J. Am. Ceram. Soc. 2022, 105, 668–686. [Google Scholar] [CrossRef]
- Kim, D.-J. Effect of Ta2O5, Nb2O5, and HfO2 alloying on the transformability of Y2O3-stabilized tetragonal ZrO2. J. Am. Ceram. Soc. 1990, 73, 115–120. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Shinya, A. Evaluation of fracture toughness using SEVNB method and IF method for zirconia (Y-TZP). Ann. Jpn. Prosthodont. Soc. 2013, 5, 165–173. [Google Scholar] [CrossRef]
- Ban, S.; Suehiro, Y.; Nakanishi, H.; Nawa, M. Fracture toughness of dental zirconia before and after autoclaving. J. Ceram. Soc. Jpn. 2010, 118, 406–409. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.B.; Evans, A.G. Reply to “Comment on elastic/plastic indentation damage in ceramics: The median/radial crack system”. J. Am. Ceram. Soc. 1981, 64, C182–C183. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Li, P.; Chen, I.-W.; Penner-Hahn, J.E. Effect of dopants on zirconia stabilization-An X-ray absorption study: I, Trivalent dopants. J. Am. Ceram. Soc. 1994, 77, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chen, I.-W.; Penner-Hahn, J.E. Effect of dopants on zirconia stabilization-An X-ray absorption study: III, Charge-compensating dopants. J. Am. Ceram. Soc. 1994, 77, 1289–1294. [Google Scholar] [CrossRef]
- Guo, X. Effect of Nb2O5 on the space-charge conduction of Y2O3-stabilized ZrO2. Solid State Ion. 1997, 99, 137–142. [Google Scholar] [CrossRef]
- Rohr, N.; Märtin, S.; Fischer, J. Correlations between fracture load of zirconia implant supported single crowns and mechanical properties of restorative material and cement. Dent. Mater. J. 2018, 37, 222–228. [Google Scholar] [CrossRef]
Group | No | Content (mol%) | Toughness (MPa√m) | Opacity (%) | |||
---|---|---|---|---|---|---|---|
Y2O3 | Yb2O3 | Nb2O5 | Ta2O5 | ||||
Y2O3 | 1 | 2.0 | 0.0 | 0.00 | 0.00 | 9.1 | 86.4 |
2 | 3.0 | 0.0 | 0.00 | 0.00 | 4.4 | 81.0 | |
3 | 4.2 | 0.0 | 0.00 | 0.00 | 3.6 | 72.9 | |
4 | 5.6 | 0.0 | 0.00 | 0.00 | 3.0 | 70.0 | |
Yb2O3 | 5 | 0.0 | 4.2 | 0.00 | 0.00 | 3.7 | 73.2 |
Y2O3-Yb2O3 | 6 | 1.8 | 1.7 | 0.00 | 0.00 | 4.2 | 73.8 |
7 | 1.8 | 2.4 | 0.00 | 0.00 | 3.8 | 72.4 | |
8 | 1.8 | 3.8 | 0.00 | 0.00 | 3.0 | 69.3 | |
9 | 3.0 | 1.2 | 0.00 | 0.00 | 3.6 | 71.3 | |
Y2O3-Nb2O5 | 10 | 3.0 | 0.0 | 0.50 | 0.00 | 10.1 | 83.8 |
11 | 4.2 | 0.0 | 0.20 | 0.00 | 3.9 | 73.3 | |
12 | 4.2 | 0.0 | 0.70 | 0.00 | 4.7 | 75.4 | |
13 | 4.2 | 0.0 | 0.75 | 0.00 | 4.9 | 74.9 | |
14 | 4.2 | 0.0 | 0.80 | 0.00 | 7.5 | 75.9 | |
15 | 4.2 | 0.0 | 1.00 | 0.00 | 9.6 | 75.7 | |
16 | 4.2 | 0.0 | 1.20 | 0.00 | 9.9 | 76.7 | |
17 | 4.2 | 0.0 | 1.40 | 0.00 | 10.7 | 77.6 | |
18 | 5.0 | 0.0 | 1.00 | 0.00 | 6.7 | 76.7 | |
19 | 5.0 | 0.0 | 1.20 | 0.00 | 9.0 | 77.9 | |
20 | 5.0 | 0.0 | 1.40 | 0.00 | 9.7 | 78.2 | |
21 | 5.6 | 0.0 | 0.50 | 0.00 | 2.8 | 82.6 | |
22 | 5.6 | 0.0 | 1.00 | 0.00 | 3.6 | 86.4 | |
Y2O3-Ta2O5 | 23 | 3.0 | 0.0 | 0.00 | 0.50 | 11.3 | 83.8 |
24 | 4.2 | 0.0 | 0.00 | 0.75 | 7.6 | 75.9 | |
25 | 4.2 | 0.0 | 0.00 | 1.00 | 9.7 | 77.1 | |
26 | 5.0 | 0.0 | 0.00 | 1.00 | 8.7 | 78.0 | |
27 | 5.0 | 0.0 | 0.00 | 1.20 | 9.3 | 79.8 | |
Yb2O3-Nb2O5 | 28 | 0.0 | 4.2 | 0.75 | 0.00 | 5.0 | 77.2 |
29 | 0.0 | 4.2 | 1.00 | 0.00 | 5.2 | 77.3 | |
30 | 0.0 | 4.2 | 1.50 | 0.00 | 9.6 | 79.2 | |
Y2O3-Yb2O3-Nb2O5 | 31 | 1.8 | 1.7 | 0.30 | 0.00 | 5.0 | 74.6 |
32 | 1.8 | 1.7 | 0.50 | 0.00 | 6.0 | 75.3 | |
33 | 1.8 | 1.7 | 0.75 | 0.00 | 10.4 | 75.5 | |
34 | 1.8 | 1.7 | 1.00 | 0.00 | 11.7 | 76.8 | |
35 | 1.8 | 1.7 | 1.50 | 0.00 | 12.3 | 78.2 | |
36 | 1.8 | 2.4 | 0.75 | 0.00 | 6.0 | 75.8 | |
37 | 1.8 | 2.4 | 1.00 | 0.00 | 10.1 | 77.0 | |
38 | 1.8 | 2.4 | 1.50 | 0.00 | 11.5 | 78.3 | |
39 | 1.8 | 3.8 | 0.50 | 0.00 | 3.5 | 76.2 | |
40 | 1.8 | 3.8 | 1.00 | 0.00 | 4.2 | 78.9 | |
41 | 3.0 | 1.2 | 1.00 | 0.00 | 8.9 | 76.8 | |
Y2O3-Nb2O5-Ta2O5 | 42 | 4.2 | 0.0 | 0.30 | 0.30 | 5.7 | 77.7 |
43 | 4.2 | 0.0 | 0.50 | 0.50 | 11.3 | 77.5 | |
44 | 4.2 | 0.0 | 0.80 | 0.80 | 9.0 | 77.7 |
Group | Atomic No. | Element | Valence | Coordination and Ionic Radii (pm) | ||
---|---|---|---|---|---|---|
VI | VII | VIII | ||||
Trivalent | 39 | Y | 3+ | 90 | 96 | 101.9 |
70 | Yb | 3+ | 86.8 | 92.5 | 98.5 | |
Tetravalent | 40 | Zr | 4+ | 72 | 78 | 84 |
Pentavalent | 41 | Nb | 5+ | 64 | 69 | 74 |
73 | Ta | 5+ | 64 | 69 | 74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ban, S.; Yasuoka, Y.; Sugiyama, T.; Matsuura, Y. Translucent and Highly Toughened Zirconia Suitable for Dental Restorations. Prosthesis 2023, 5, 60-72. https://doi.org/10.3390/prosthesis5010005
Ban S, Yasuoka Y, Sugiyama T, Matsuura Y. Translucent and Highly Toughened Zirconia Suitable for Dental Restorations. Prosthesis. 2023; 5(1):60-72. https://doi.org/10.3390/prosthesis5010005
Chicago/Turabian StyleBan, Seiji, Yuta Yasuoka, Tsutomu Sugiyama, and Yuzo Matsuura. 2023. "Translucent and Highly Toughened Zirconia Suitable for Dental Restorations" Prosthesis 5, no. 1: 60-72. https://doi.org/10.3390/prosthesis5010005
APA StyleBan, S., Yasuoka, Y., Sugiyama, T., & Matsuura, Y. (2023). Translucent and Highly Toughened Zirconia Suitable for Dental Restorations. Prosthesis, 5(1), 60-72. https://doi.org/10.3390/prosthesis5010005