Endo and Exoskeleton: New Technologies on Composite Materials
Abstract
:1. Introduction
1.1. Background
1.2. Aim
2. Results
2.1. Search
2.2. Glass Fiber
- In disused marble, it consisted in passing the spindle through drawing nozzles;
- Disused wire rod drawing consisted of pulling glass rods to form fibers;
- With direct melting, the melt, slightly cooled but still plastic, is passed through platinum–iridium alloys (Pt-Ir) matrix, the fibers are coated with polymers to prevent them from melting together and arranged in bundles.
2.3. Carbon Fiber
- Carbon fibers from polyacrylonitrile (PAN): obtained through stabilization, carbonization and possible heat treatment at high temperature of the polyacrylonitrile; 90% of carbon fibers are currently produced according to this methodology;
- Carbon fibers from isotropic pitch: obtained from pitch fibers subjected to stabilization and carbonization;
- Carbon fibers from anisotropic pitch (MPP, mesophase pitch): obtained from mesogenic pitch converted into mesophasic pitch during spinning; this mesophasic pitch is then subjected to stabilization, carbonization and high temperature heat treatment;
- Rayon carbon fibers: obtained from rayon fibers subjected to chemical pre-treatment and carbonization; this type of carbon fibers is no longer industrially produced;
- Gas phase carbon fibers: obtained from a gaseous phase containing hydrocarbons and solid catalysts; these carbon fibers are not currently marketed. Depending on the raw material used to produce the fiber, the carbon fiber could be turbostratic or graphitic, or possess a hybrid structure in which there are both turbostratic and graphitic parts. In the turbostratic carbon fiber, or with a crystalline structure formed by planes each deviated laterally with respect to the other, the sheets of carbon atoms are randomly joined or folded together. The carbon fibers obtained from the PAN are turbostratic, while the carbon fibers derived from the mesophase pitch are graphitic after heating at temperatures above 2200 °C. The turbostratic carbon fibers tend to have a greater tensile strength, while the mesophase-derived fibers subjected to heat treatment have high stiffness (Young’s modulus) and high thermal conductivity [21,22,23,24,25,26].
- Racing car
- Bicycles
- Canoes
- Water skiing
- Soles of some soccer shoes
- Golf clubs
- Fishing rods
- Tennis rackets
- Archery
- Protective helmets
- Bodywork and components for rc cars
- Aircraft coverings
- Professional swimming costumes
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
References
- Cicciù, M. Prosthesis: New Technological Opportunities and Innovative Biomedical Devices. Prosthesis 2019, 1, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Katoh, Y.; Kohyama, A.; Nozawa, T.; Sato, M. SiC/SiC composites through transient eutectic-phase route for fusion applications. J. Nucl. Mater. 2004, 329–333, 587–591. [Google Scholar] [CrossRef]
- Pizzicannella, J.; Diomede, F.; Gugliandolo, A.; Chiricosta, L.; Bramanti, P.; Merciaro, I.; Orsini, T.; Mazzon, E.; Trubiani, O. 3D Printing PLA/Gingival Stem Cells/EVs Upregulate miR-2861 and -210 during Osteoangiogenesis Commitment. Int. J. Mol. Sci. 2019, 20, 3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.; Gaulier, M.; Duval, A.; Renaudin, G. Silver Doping Mechanism in Bioceramics—From Ag+: Doped HAp to Ag°/BCP Nanocomposite. Crystals 2019, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Ferracini, R.; Bistolfi, A.; Garibaldi, R.; Furfaro, V.; Battista, A.; Perale, G. Composite Xenohybrid Bovine Bone-Derived Scaffold as Bone Substitute for the Treatment of Tibial Plateau Fractures. Appl. Sci. 2019, 9, 2675. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Auriat, A.M.; Li, T.; Stumpf, T.R.; Wylie, R.; Chen, X.; Willerth, S.M.; DeRosa, M.; Tarizian, M.; Cao, X.; et al. Advancements in Canadian Biomaterials Research in Neurotraumatic Diagnosis and Therapies. Processes 2019, 7, 336. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Abdul Rani, A.M.; Mufti, R.A.; Hastuty, S.; Hussain, M.; Shehzad, N.; Baig, Z.; Abdu Aliyu, A.A. An Efficient Approach for Nitrogen Diffusion and Surface Nitriding of Boron-Titanium Modified Stainless Steel Alloy for Biomedical Applications. Metals 2019, 9, 755. [Google Scholar] [CrossRef] [Green Version]
- Paryag, A.; Lowe, J.; Rafeek, R. Colored Gingiva Composite Used for the Rehabilitation of Gingiva Recessions and Non-Carious Cervical Lesions. Dent. J. 2017, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- Chinelatti, M.A.; Santos, E.L.; Tirapelli, C.; Pires-de-Souza, F.C.P. Effect of Methods of Biosilicate Microparticle Application on Dentin Adhesion. Dent. J. 2019, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- Corigliano, P.; Crupi, V.; Epasto, G.; Guglielmino, E.; Risitano, G. Fatigue Assessment by Thermal Analysis during Tensile Tests on Steel. Procedia Eng. 2015, 109, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Cucinotta, F.; Guglielmino, E.; Risitano, G.; Sfravara, F. Assessment of Damage Evolution in Sandwich Composite Material Subjected to Repeated Impacts by Means Optical Measurements. Procedia Struct. Integr. 2016, 2, 3660–3667. [Google Scholar] [CrossRef] [Green Version]
- Giudice, G.; Cicciù, M.; Cervino, G.; Lizio, A.; Visco, A. Flowable resin and marginal gap on tooth third medial cavity involving enamel and radicular cementum: A SEM evaluation of two restoration techniques. Indian J. Dent. Res. 2012, 23, 763–769. [Google Scholar] [PubMed]
- Taheri, H.; Hassen, A.A. Nondestructive Ultrasonic Inspection of Composite Materials: A Comparative Advantage of Phased Array Ultrasonic. Appl. Sci. 2019, 9, 1628. [Google Scholar] [CrossRef] [Green Version]
- Spelter, A.; Bergmann, S.; Bielak, J.; Hegger, J. Long-Term Durability of Carbon-Reinforced Concrete: An Overview and Experimental Investigations. Appl. Sci. 2019, 9, 1651. [Google Scholar] [CrossRef]
- Gao, K.; Li, Z.; Zhang, J.; Tu, J.; Li, X. Experimental Research on Bond Behavior between GFRP Bars and Stirrups-Confined Concrete. Appl. Sci. 2019, 9, 1340. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Zhang, P.-f.; Zhang, Y.-n. Acoustic Emission Based on Cluster and Sentry Function to Monitor Tensile Progressive Damage of Carbon Fiber Woven Composites. Appl. Sci. 2018, 8, 2265. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Zhang, K.; Zhu, S.; Xu, H.; Cao, D.; Zhao, L.; Zhang, R.; Yin, W. Review on the Electrical Resistance/Conductivity of Carbon Fiber Reinforced Polymer. Appl. Sci. 2019, 9, 2390. [Google Scholar] [CrossRef] [Green Version]
- Otani, T.; Hashimoto, K.; Miyamae, S.; Ueta, H.; Natsuhara, A.; Sakaguchi, M.; Kawakami, Y.; Lim, H.-O.; Takanishi, A. Upper-Body Control and Mechanism of Humanoids to Compensate for Angular Momentum in the Yaw Direction Based on Human Running. Appl. Sci. 2018, 8, 44. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.-W.; Kim, C.-M.; Hwang, K.-H.; Kim, S.-R. Embedded Based Real-Time Monitoring in the High-Pressure Resin Transfer Molding Process for CFRP. Appl. Sci. 2019, 9, 1795. [Google Scholar] [CrossRef] [Green Version]
- Ayyagari, S.; Al-Haik, M. Enhancing the Viscoelastic Performance of Carbon Fiber Composites by Incorporating CNTs and ZnO Nanofillers. Appl. Sci. 2019, 9, 2281. [Google Scholar] [CrossRef] [Green Version]
- Vercio, R.C.; Basmajian, H.G. Fracture of a Carbon Fiber Reinforced Intramedullary Femoral Nail. J. Am. Acad. Orthop. Surg. 2019, 27, e585–e588. [Google Scholar] [CrossRef] [PubMed]
- Pesce, P.; Lagazzo, A.; Barberis, F.; Repetto, L.; Pera, F.; Baldi, D.; Menini, M. Mechanical characterisation of multi vs. uni-directional carbon fiber frameworks for dental implant applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Mehl, B.T.; Martin, R.S. Integrating 3D Cell Culture of PC12 Cells with Microchip-Based Electrochemical Detection. Anal. Methods Adv. Methods Appl. 2019, 11, 1064–1072. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, S.; Yang, J.; Ji, M.; Yu, J.; Wang, M.; Chai, X.; Yang, B.; Zhu, C.; Xu, J. Preparation, Stabilization and Carbonization of a Novel Polyacrylonitrile-Based Carbon Fiber Precursor. Polymers 2019, 11, 1150. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Duan, X.; Jiang, P.; Zhang, H.; Liu, J.; Wen, S.; Zhao, X.; Zhang, L. Molecular dynamics simulation of the electrical conductive network formation of polymer nanocomposites by utilizing diblock copolymer-mediated nanoparticles. Soft Matter 2019, 15. [Google Scholar] [CrossRef]
- Erdenechimeg, K.; Jeong, H.I.; Lee, C.M. A Study on the Laser-Assisted Machining of Carbon Fiber Reinforced Silicon Carbide. Materials 2019, 12, 2061. [Google Scholar] [CrossRef] [Green Version]
- Risitano, A.; Clienti, C.; Risitano, G. Determination of fatigue limit by mono-axial tensile specimens using thermal analysis. Key Eng. Mater. 2009, 452, 361–364. [Google Scholar] [CrossRef]
- Fargione, G.; Tringale, D.; Guglielmino, E.; Risitano, G. Fatigue characterization of mechanical components in service. Frattura ed Integrita Strutturale 2013, 26, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Cicciù, M.; Cervino, G.; Milone, D.; Risitano, G. FEM investigation of the stress distribution over mandibular bone due to screwed overdenture positioned on dental implants. Materials 2018, 11, 1512. [Google Scholar] [CrossRef] [Green Version]
- Bramanti, E.; Cervino, G.; Lauritano, F.; Fiorillo, L.; D’Amico, C.; Sambataro, S.; Denaro, D.; Fama, F.; Ierardo, G.; Polimeni, A.; et al. FEM and Von Mises Analysis on Prosthetic Crowns Structural Elements: Evaluation of Different Applied Materials. Sci. World J. 2017, 2017, 1029574. [Google Scholar] [CrossRef] [Green Version]
- Cervino, G.; Romeo, U.; Lauritano, F.; Bramanti, E.; Fiorillo, L.; D’Amico, C.; Milone, D.; Laino, L.; Campolongo, F.; Rapisarda, S.; et al. Fem and Von Mises Analysis of OSSTEM (r) Dental Implant Structural Components: Evaluation of Different Direction Dynamic Loads. Open Dent. J. 2018, 12, 219–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portelli, M.; Militi, A.; Logiudice, A.; Nucera, R. An Integrated Approach, Orthodontic and Prosthetic, in a Case of Maxillary Lateral Incisors Agenesis. Prosthesis 2020, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- McGrory, A.; McGrory, B.; Rana, A.; Babikian, G. Incidence of Heterotopic Ossification in Anterior Based Muscle Sparing Total Hip Arthroplasty: A Retrospective Radiographic Review. Prosthesis 2020, 1, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Frossard, L.; Jones, M.; Stewart, I.; Leggat, P.; Schuetz, M.; Langton, C. Kinetics of Lower Limb Prosthesis: Automated Detection of Vertical Loading Rate. Prosthesis 2020, 1, 16–28. [Google Scholar] [CrossRef] [Green Version]
- Ortensi, L.; Vitali, T.; Bonfiglioli, R.; Grande, F. New Tricks in the Preparation Design for Prosthetic Ceramic Laminate Veeners. Prosthesis 2020, 1, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Cicciù, M.; Cervino, G.; Terranova, A.; Risitano, G.; Raffaele, M.; Cucinotta, F.; Santonocito, D.; Fiorillo, L. Prosthetic and Mechanical Parameters of the Facial Bone under the Load of Different Dental Implant Shapes: A Parametric Study. Prosthesis 2020, 1, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Cervino, G.; Montanari, M.; Santonocito, D.; Nicita, F.; Baldari, R.; De Angelis, C.; Storni, G.; Fiorillo, L. Comparison of Two Low-Profile Prosthetic Retention System Interfaces: Preliminary Data of an In Vitro Study. Prosthesis 2020, 1, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Iovino, P.; Di Sarno, A.; De Caro, V.; Mazzei, C.; Santonicola, A.; Bruno, V. Screwdriver Aspiration During Oral Procedures: A Lesson for Dentists and Gastroenterologists. Prosthesis 2020, 1, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Sambataro, S.; Cervino, G.; Fiorillo, L.; Cicciu, M. Upper First Premolar Positioning Evaluation for the Stability of the Dental Occlusion: Anatomical Considerations. J. Craniofac. Surg. 2018, 29, 1366–1369. [Google Scholar] [CrossRef]
- Cicciu, M.; Fiorillo, L.; Herford, A.S.; Crimi, S.; Bianchi, A.; D’Amico, C.; Laino, L.; Cervino, G. Bioactive Titanium Surfaces: Interactions of Eukaryotic and Prokaryotic Cells of Nano Devices Applied to Dental Practice. Biomedicines 2019, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Cervino, G.; Fiorillo, L.; Iannello, G.; Santonocito, D.; Risitano, G.; Cicciù, M. Sandblasted and Acid Etched Titanium Dental Implant Surfaces Systematic Review and Confocal Microscopy Evaluation. Materials 2019, 12, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Typical Properties of Glass Fibers |
---|
Density: 2.48 g/cm3 |
Elastic modulus: 90 GPa |
Mechanical tensile strength (and new fiber): 4500 MPa |
Percentage elongation at break: 5% |
• GP (General Performance): characterized by lower mechanical resistance; they have a Young’s modulus not exceeding 200 GPa; |
• LM (Low Modulus): they have low values of the Young’s modulus; |
• HP (High Performance): characterized by greater mechanical strength |
• HT (High Tensile Strength): they have high values of tensile strength (greater than 3000 MPa [1]) and standard values of Young’s modulus (around 150–300 GPa [8]) |
• IM (Intermediate Modulus): have moderate values of Young’s modulus (around 275–350 GPa [9]) |
• HM (High Modulus): they have high values of Young’s modulus (greater than 300 GPa) |
• UHM (UltraHigh Modulus): they have high values of Young’s modulus (greater than 600 GPa). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiorillo, L.; D’Amico, C.; Turkina, A.Y.; Nicita, F.; Amoroso, G.; Risitano, G. Endo and Exoskeleton: New Technologies on Composite Materials. Prosthesis 2020, 2, 1-9. https://doi.org/10.3390/prosthesis2010001
Fiorillo L, D’Amico C, Turkina AY, Nicita F, Amoroso G, Risitano G. Endo and Exoskeleton: New Technologies on Composite Materials. Prosthesis. 2020; 2(1):1-9. https://doi.org/10.3390/prosthesis2010001
Chicago/Turabian StyleFiorillo, Luca, Cesare D’Amico, Anna Yurjevna Turkina, Fabiana Nicita, Giulia Amoroso, and Giacomo Risitano. 2020. "Endo and Exoskeleton: New Technologies on Composite Materials" Prosthesis 2, no. 1: 1-9. https://doi.org/10.3390/prosthesis2010001
APA StyleFiorillo, L., D’Amico, C., Turkina, A. Y., Nicita, F., Amoroso, G., & Risitano, G. (2020). Endo and Exoskeleton: New Technologies on Composite Materials. Prosthesis, 2(1), 1-9. https://doi.org/10.3390/prosthesis2010001