A New Space-Time Theory Unravels the Origins of Classical Mechanics for the Dirac Equation
Abstract
1. Introduction
2. The Missing Path Integral and Its Potential Form
2.1. Inconsistency in Classical Path Integral Form
2.2. Incompleteness of Path Integral Forms
2.3. Formulating the Missing Path Integral
- (1)
- It reduces to the standard Feynman path integral and reproduces the Schrödinger equation in the appropriate non-relativistic limit.
- (2)
- It connects the relativistic classical action to the Dirac equation for spin- particles, providing a single-particle relativistic spacetime description.
- (3)
- It yields a mathematically well-defined and convergent functional integral.
- In other words, we seek a path-integral formulation that unifies the roles of and and bridges non-relativistic and relativistic quantum mechanics within a single spacetime framework.
3. Construction of Path Integral Theory in Spinor Form
3.1. Tricomi Function and the Spinor Path Integral
3.2. Exposition on the Spinor Form of Path Integral Expression
4. Relations to Existing Path-Integral Formulations
4.1. Spinor Form of Path Integrals vs. Scalar Form of Path Integrals
4.2. Spinor Form of Path Integrals vs. Feynman Path Integrals
4.3. Spinor Form of Path Integrals vs. Path Integrals in QED
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Free Relativistic Particle
Appendix A.1. Spinor Path Integral and Time-Slice Slicing
Appendix A.2. Boost Matrices in Different Spatial Dimensions
- 1D case.For motion along the x–axis, and . The real-velocity boost matrix and its operator inverse arewhere and .
- 2D and 3D cases.For motion in the x–y plane or in 3D the velocity is and the Pauli matrices enter only through . The real-velocity boosts arewhile the corresponding operator inverses have the unified structurewhere is a scalar factor that depends on the spatial dimension ( and in our explicit construction).These matrices diagonalize the free Dirac Hamiltonian and play a central role in the evaluation of the path integral.
Appendix A.3. Evaluation of the Free Time-Slice Kernel
Appendix A.4. Identification of the Free Hamiltonian
Appendix B. Particle in an Electromagnetic Potential
References
- Feynman, R.P. Space-Time Approach to Non-Relativistic Quantum Mechanics. Rev. Mod. Phys. 1948, 20, 367. [Google Scholar] [CrossRef]
- Feynman, R.P. Space-Time Approach to Quantum Electrodynamics. Phys. Rev. 1949, 76, 769. [Google Scholar] [CrossRef]
- Peskin, M.E. An Introduction to Quantum FIELD Theory; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kleinert, H. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets; World Scientific Publishing: Singapore, 2009. [Google Scholar]
- Barut, A.O.; Duru, I.H. Path integral for the relativistic electron. Phys. Rep. 1989, 172, 1. [Google Scholar] [CrossRef]
- Kiefer, C. Functional Schrödinger Equation for Scalar QED. Phys. Rev. D 1992, 45, 2044. [Google Scholar] [CrossRef] [PubMed]
- Barvinsky, A. Path integrals and the trace anomaly. Nucl. Phys. 1998, 520, 533. [Google Scholar] [CrossRef]
- Seidewitz, E. Foundations of a spacetime path formalism for relativistic quantum mechanics. J. Math. Phys. 2006, 47, 112302. [Google Scholar] [CrossRef]
- Johnson-Freyd, T. Feynman-diagrammatic Description of the Asymptotics of the Time Evolution Operator in Quantum Mechanics. Lett. Math. Phys. 2010, 94, 123. [Google Scholar] [CrossRef]
- The Feynman Propagator from a Single Path. Phys. Rev. Lett. 2002, 89, 250403. [CrossRef]
- Kull, A. Quantum-mechanical Motion of a Relativistic Particle in Non-continuous Spacetime. Phys. Lett. 2002, 303, 147. [Google Scholar] [CrossRef]
- Kull, A.; Treumann, R.A. On the Path Integral of the Relativistic Electron. Int. J. Theor. Phys. 1999, 38, 1423. [Google Scholar] [CrossRef]
- Gaveau, B.; Jacobson, T.; Kac, M.; Schulman, L.S. Relativistic extension of the analogy between quantum mechanics and Brownian motion. Phys. Rev. Lett. 1984, 53, 419. [Google Scholar] [CrossRef]
- Feynman, R.; Hibbs, A.; Styer, D. Quantum Mechanics and Path Integrals; Dover Publications: Garden City, NY, USA, 2010. [Google Scholar]
- Henneaux, M.; Teitelboim, C. Relativistic quantum mechanics of supersymmetric particles. Ann. Phys. 1982, 143, 127. [Google Scholar] [CrossRef]
- Jacobson, T.; Schulman, L.S. Quantum stochastics: The passage from a relativistic path integral to the Dirac equation. J. Phys. A Math. Gen. 1984, 17, 375. [Google Scholar] [CrossRef]
- Ord, G.; Mckeon, D. The path integral for the Dirac equation. Ann. Phys. 1993, 222, 244. [Google Scholar] [CrossRef]
- Earle, M.A. A path integral for the Dirac equation. J. Phys. A Math. Gen. 1996, 29, 3837. [Google Scholar]
- Gaveau, B.; Quezada, R. A path integral for the Dirac equation. J. Math. Phys. 1993, 34, 2102. [Google Scholar]
- Gaveau, B.; Quezada, R. A path integral representation for the Dirac propagator. J. Math. Phys. 1994, 35, 3054. [Google Scholar]
- Aliev, T.M.; Fainberg, V.Y.; Pak, N.K. Path integral for spin: A new approach. Nucl. Phys. B 1994, 429, 321. [Google Scholar] [CrossRef]
- Aliev, T.M.; Fainberg, V.Y.; Pak, N.K. New approach to the path integral representation for the Dirac particle propagator. Phys. Lett. D 1994, 50, 6594. [Google Scholar] [CrossRef] [PubMed]
- Fradkin, E.S.; Gitman, D.M. Path-integral representation for the relativistic particle propagator. Phys. Rev. D 1991, 44, 3230. [Google Scholar] [CrossRef] [PubMed]
- Gitman, D.M.; Zlatev, S.I. Spin factor in the path integral representation for the Dirac propagator in external fields. Phys. Rev. D 1997, 55, 7701. [Google Scholar] [CrossRef]
- Gitman, D.M. Path integrals and pseudoclassical description for spinning particles in arbitrary dimensions. Nucl. Phys. B 1997, 488, 490–512. [Google Scholar] [CrossRef]
- Alexandrou, C.; Rosenfelder, R.; Schreiber, A.W. Worldline path integral for the massive Dirac propagator: A four-dimensional approach. Phys. Rev. A 1999, 59, 1762. [Google Scholar] [CrossRef]
- Corradini, O.; Maurizio, M. A Monte Carlo approach to the worldline formalism in curved space. J. High Energy Phys. 2020, 11, 1. [Google Scholar] [CrossRef]
- Wen, W. Quantum Measurement and Extended Feynman Path Integral. Commun. Theor. Phys. 2012, 57, 967. [Google Scholar] [CrossRef]
- Schulman, L.S. Techniques and Applications of Path Integration; Wiley: Hoboken, NJ, USA, 1981. [Google Scholar]
- Sakurai, J.J.; Napolitano, J. Modern Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. (Eds.) NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010; Chapter 13. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1972. [Google Scholar]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists: A Comprehensive Guide, 7th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. Ser. A 1927, 117, 610. [Google Scholar]
- Tinkham, M. Group Theory and Quantum Mechanics; Courier Corporation: North Chelmsford, MA, USA, 2003. [Google Scholar]
- Hestenes, D. Space-Time Algebra; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Lounesto, P. Clifford algebras and spinors. In Clifford Algebras and Their Applications in Mathematical Physics; Chisholm, J.S.R., Common, A.K., Eds.; Springer: Dordrecht, The Netherlands, 1986; pp. 25–37. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W. A New Space-Time Theory Unravels the Origins of Classical Mechanics for the Dirac Equation. Quantum Rep. 2025, 7, 59. https://doi.org/10.3390/quantum7040059
Wen W. A New Space-Time Theory Unravels the Origins of Classical Mechanics for the Dirac Equation. Quantum Reports. 2025; 7(4):59. https://doi.org/10.3390/quantum7040059
Chicago/Turabian StyleWen, Wei. 2025. "A New Space-Time Theory Unravels the Origins of Classical Mechanics for the Dirac Equation" Quantum Reports 7, no. 4: 59. https://doi.org/10.3390/quantum7040059
APA StyleWen, W. (2025). A New Space-Time Theory Unravels the Origins of Classical Mechanics for the Dirac Equation. Quantum Reports, 7(4), 59. https://doi.org/10.3390/quantum7040059

