Variance-Based Uncertainty Relations: A Concise Review of Inequalities Discovered Since 1927
Abstract
1. Introduction
2. Preparation Uncertainty Relations Based on Variances: The Beginning of the Story
3. Robertson’s Inequalities for N Arbitrary Operators and Their Generalizations
3.1. 2n Coordinate and Momentum Operators and Some Generalizations
3.1.1. Inequalities for the Partial and Full Traces of Covariance Matrices
3.1.2. Inequalities for Sums of Uncertainties
3.1.3. Symplectic Invariants and Resulting Uncertainty Relations
3.2. Inequalities Without Covariances
4. Specific Inequalities for Two Operators
4.1. Three Canonical Observables with a Linear Dependence
5. Inequalities for Three Independent Operators: A General Case
5.1. Two Observables Coupled with a Third One
5.2. Inequalities Without Covariances for Three Operators
6. Concrete Families of Three Operators
6.1. Angular Momentum Operators
6.2. A Charged Particle in a Magnetic Field
6.3. “Degrees of Uncertainty” of the Angular Momentum
6.4. Spin-1/2
6.5. Angular Momentum, Sine and Cosine Operators
6.6. Bi-Products of the Coordinate and Momentum in One Dimension
6.7. Fourth-Order Moments in the Gaussian States
7. Four and More Operators
7.1. Four Quadratures
7.2. Inequalities Without Covariances for Four Operators
7.3. Five Operators
7.4. Compact Sum and Product Inequalities for N Operators
8. Inequalities Based on the Coordinate Probability Density Alone
8.1. Connections with the “Fisher Information” and Generalized Mean Values
9. State-Extended and State-Independent UR
9.1. Trifonov’s Inequalities
9.2. Maccone–Pati Inequalities and Their Generalizations
9.3. “Weighted-like”, “Tighten”, “Reverse” and “Improved” Uncertainty Relations
10. Bargmann–Faris Inequalities and Their Generalizations
11. Uncertainty Relations for Mixed and Non-Gaussian States
11.1. Inequalities Containing the “Second-Order Purity”
11.2. Inequalities for Modified “Uncertainties”
11.3. Generalizations to Several Dimensions
11.4. Inequalities Containing the “Skew Information”
11.5. Simple Examples
11.6. Purity- and Gaussianity-Constrained Uncertainty Relations
12. Inequalities for Higher Moments
13. Concluding Remarks About Other Families of “Uncertainty Relations”
Funding
Acknowledgments
Conflicts of Interest
References
- Heisenberg, W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 1927, 43, 172–198. [Google Scholar] [CrossRef]
- Kennard, E.H. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys. 1927, 44, 326–352. [Google Scholar] [CrossRef]
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison–Wesley: Reading, MA, USA, 1963; Volume 3, pp. 1–11. [Google Scholar]
- Bohr, N. The quantum postulate and the recent development of atomic theory. Nature 1928, 121, 580–590. [Google Scholar] [CrossRef]
- Heisenberg, W. The Physical Principles of the Quantum Theory; Dover: New York, NY, USA, 1930; pp. 13–54. [Google Scholar]
- Bohr, N. Collected Papers, Vol. 6: Foundations of Quantum Physics I; North-Holland: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Bohr, N. Discussion with Einstein on epistemological problems in atomic physics. In Albert Einstein: Philosopher—Scientist; Schlipp, P.A., Ed.; Cambridge University Press: London, UK, 1970; pp. 199–241. [Google Scholar]
- Landau, L.; Peierls, R. Erweiterung des Unbestimmtheitsprinzip für die relativistische Quantentheorie. Z. Phys. 1931, 69, 56–69. [Google Scholar] [CrossRef]
- Mandelstam, L.; Tamm, I. The uncertainty relation between energy and time in non-relativistic quantum mechanics. J. Phys. USSR 1945, 9, 249–254. [Google Scholar]
- Ballentine, L.E. The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 1970, 42, 358–381. [Google Scholar] [CrossRef]
- D’Espagnat, B. (Ed.) Foundations of Quantum Mechanics, Proceedings of the International School of Physics Enrico Fermi, Course IL, Varenna, Italy, 29 June–July 11 1970; Academic: New York, NY, USA, 1971. [Google Scholar]
- Price, W.C.; Chissik, S.S. (Eds.) The Uncertainty Principle and Foundations of Quantum Mechanics. A Fifty Years’ Survey; Wiley: New York, NY, USA, 1977. [Google Scholar]
- Jammer, M. The Conceptual Development of Quantum Mechanics; McGraw-Hill: New York, NY, USA, 1966; Chapter 7.1. [Google Scholar]
- Björk, G.; Söderholm, J.; Trifonov, A.; Tsegaye, T.; Karlsson, A. Complementarity and the uncertainty relations. Phys. Rev. A 1999, 60, 1874–1882. [Google Scholar] [CrossRef]
- Busch, P.; Lahti, P.; Werner, R.F. Measurement uncertainty relations. J. Math. Phys. 2014, 55, 042111. [Google Scholar] [CrossRef]
- Dammeier, L.; Schwonnek, R.; Werner, R.F. Uncertainty relations for angular momentum. New J. Phys. 2015, 17, 093046. [Google Scholar] [CrossRef]
- Guarnieri, G.; Motta, M.; Lanz, L. Single-photon observables and preparation uncertainty relations. J. Phys. A Math. Theor. 2015, 48, 265302S. [Google Scholar] [CrossRef]
- Kechrimparis, S.; Weigert, S. Preparational uncertainty relations for N continuous variables. Mathematics 2016, 4, 49. [Google Scholar] [CrossRef]
- Jijnasu, V. The uncertainty principle—A simplified review of the four versions. Stud. Hist. Philos. Mod. Phys. 2016, 55, 62–71. [Google Scholar] [CrossRef]
- Riggs, P.J. What is the uncertainty principle of non-relativistic quantum mechanics? Eur. J. Phys. 2018, 39, 035409. [Google Scholar] [CrossRef]
- Saha, D.; Oszmaniec, M.; Czekaj, L.; Horodecki, M.; Horodecki, R. Operational foundations for complementarity and uncertainty relations. Phys. Rev. A 2020, 101, 052104. [Google Scholar] [CrossRef]
- Englert, B.-G. Uncertainty relations revisited. Phys. Lett. A 2024, 494, 129278. [Google Scholar] [CrossRef]
- Busch, P.; Lahti, P.J. The standard model of quantum measurement theory: History and applications. Found. Phys. 1996, 26, 875–893. [Google Scholar] [CrossRef]
- Ozawa, M. Uncertainty relations for noise and disturbance in generalized quantum measurements. Ann. Phys. 2004, 311, 350–416. [Google Scholar] [CrossRef]
- Busch, P.; Shilladay, C. Complementarity and uncertainty in Mach–Zehnder interferometry and beyond. Phys. Rep. 2006, 435, 1–31. [Google Scholar] [CrossRef]
- Busch, P.; Heinonen, T.; Lahti, P. Heisenberg’s uncertainty principle. Phys. Rep. 2007, 452, 155–176. [Google Scholar] [CrossRef]
- Werner, R.F.; Farrelly, T. Uncertainty from Heisenberg to today. Found. Phys. 2019, 49, 460–491. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Generalization of the uncertainty relations in quantum mechanics. In Invariants and the Evolution of Nonstationary Quantum Systems; Proceedings of Lebedev Physics Institute; Markov, M.A., Ed.; Nova Science: Commack, NY, USA, 1989; Volume 183, pp. 3–101. [Google Scholar]
- Jauch, J.M. Foundations of Quantum Mechanics; Addison-Wesley: Reading, MA, USA, 1968; pp. 160–163. [Google Scholar]
- Holevo, A.S. Probabilistic and Statistical Aspects of Quantum Theory; North-Holland: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Ludwig, G. Foundations of Quantum Mechanics; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Bohm, A. Quantum Mechanics: Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Busch, P.; Lahti, P.; Pellonpää, J.-P.; Ylinen, K. Quantum Measurement; Springer: Zurich, Switzerland, 2016. [Google Scholar]
- Folland, G.B.; Sitaram, A. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 1997, 3, 207–238. [Google Scholar] [CrossRef]
- de Gosson, M.; Luef, F. Symplectic capacities and the geometry of uncertainty: The irruption of symplectic topology in classical and quantum mechanics. Phys. Rep. 2009, 484, 131–179. [Google Scholar] [CrossRef]
- Weyl, H. Gruppentheorie und Quantenmechanik. Z. Phys. 1927, 46, 1–46. [Google Scholar]
- Robertson, H.P. The uncertainty principle. Phys. Rev. 1929, 34, 163–164. [Google Scholar] [CrossRef]
- Robertson, H.P. A general formulation of the uncertainty principle and its classical interpretation. Phys. Rev. 1930, 35, 667. [Google Scholar]
- Schrödinger, E. Zum Heisenbergschen Unschärfeprinzip. Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 1930, 19, 296–303. [Google Scholar]
- Angelow, A.; Batoni, M.-C. About Heisenberg uncertainty relation (by E.Schrödinger). arXiv 1999, arXiv:quant-ph/9903100. [Google Scholar]
- Chisolm, E.D. Generalizing the Heisenberg uncertainty relation. Am. J. Phys. 2001, 69, 368–371. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum mechanics as a statistical theory. Proc. Cambr. Phil. Soc. 1949, 45, 99–124. [Google Scholar] [CrossRef]
- Wichmann, E.H. Density matrices arising from incomplete measurements. J. Math. Phys. 1963, 4, 884–896. [Google Scholar] [CrossRef]
- Ul’yanov, V.V. The uncertainty principle. Sov. Phys. J. 1975, 18, 277–278. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Kurmyshev, E.V.; Man’ko, V.I. Generalized uncertainty relation and correlated coherent states. Phys. Lett. A 1980, 79, 150–152. [Google Scholar] [CrossRef]
- Narcowich, F.J.; O’Connell, R.F. Necessary and sufficient conditions for a phase-space function to be a Wigner distribution. Phys. Rev. A 1986, 34, 1–6. [Google Scholar] [CrossRef]
- Tarasov, V.E. Exact discrete analogs of canonical commutation and uncertainty relations. Mathematics 2016, 4, 44. [Google Scholar] [CrossRef]
- Robertson, H.P. An indeterminacy relation for several observables and its classical interpretation. Phys.Rev. 1934, 46, 794–801. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Universal invariants of quantum systems and generalized uncertainty relations. In Group Theoretical Methods in Physics, Proceedings of the Second International Seminar, Zvenigorod, 24–26 November 1982; Markov, M.A., Man’ko, V.I., Shabad, A.E., Eds.; Harwood Academic: New York, NY, USA, 1985; Volume 1, pp. 591–612. [Google Scholar]
- Gantmacher, F.R. Theory of Matrices; AMS Chelsea: Providence, RI, USA, 1959; Chapters IX–X. [Google Scholar]
- Bellman, R. Introduction to Matrix Analysis; McGraw-Hill: New York, NY, USA, 1960; Chapter 8. [Google Scholar]
- Beckenbach, E.F.; Bellman, R. Inequalities; Springer: Berlin/Heidelberg, Germany, 1961; Chapter II. [Google Scholar]
- Marshall, A.W.; Olkin, I. Inequalities: Theory of Majorization and Its Applications; Academic: New York, NY, USA, 1979; Chapter 9. [Google Scholar]
- Hadamard, J. Résolution d’une question relative aux déterminants. Bull. Sci. Math. (Sér. 2) 1893, 17, 240–248. [Google Scholar]
- Mirsky, L. Some applications of a minimum principle in linear algebra. Monatsh. Math. 1963, 67, 104–112. [Google Scholar] [CrossRef]
- Wünsche, A. Higher-order uncertainty relations. J. Mod. Opt. 2006, 53, 931–968. [Google Scholar] [CrossRef]
- Qin, H.-H.; Fei, S.-M.; Li-Jost, X. Multi-observable uncertainty relations in product form of variances. Sci. Rep. 2016, 6, 31192. [Google Scholar] [CrossRef]
- Trifonov, D.A.; Donev, S.G. Characteristic uncertainty relations. J. Phys. A Math. Gen. 1998, 31, 8041–8047. [Google Scholar] [CrossRef]
- Belavkin, V.P.; Grishanin, B.A. Optimum estimation in quantum channels by the generalized Heisenberg inequality method. Prob. Inform. Transmission 1973, 9, 209–215. [Google Scholar]
- Chistyakov, A.L. On uncertainty relations for vector-valued operators. Theor. Math. Phys. 1976, 27, 380–382. [Google Scholar] [CrossRef]
- Delbourgo, R. Minimal uncertainty states for the rotation and allied groups. J. Phys. A Math. Gen. 1977, 10, 1837–1846. [Google Scholar] [CrossRef]
- Bochvar, D.A.; Stankevich, I.V.; Chistyakov, A.L. Effective size in quantum-mechanical systems. Russ. Chem. Rev. 1974, 43, 276–290. [Google Scholar] [CrossRef]
- Kraus, K. A further remark on uncertainty relations. Z. Phys. 1967, 201, 134–141. [Google Scholar] [CrossRef]
- Gesztesy, F.; Pittner, L. Uncertainty relations and quadratic forms. J. Phys. A Math. Gen. 1978, 11, 1765–1770. [Google Scholar] [CrossRef]
- Nicacio, F.; Falciano, F.T. Mean value of the quantum potential and uncertainty relations. Phys. Rev. A 2020, 101, 052105. [Google Scholar] [CrossRef]
- Turner, R.E.; Snider, R.F. A phase space moment method for classical and quantal dynamics. Canad. J. Phys. 1981, 59, 457–470. [Google Scholar] [CrossRef]
- McCurdy, S.; Venkatraman, R. Quantitative stability for the Heisenberg–Pauli–Weyl inequality. Nonlin. Anal. 2021, 202, 112147. [Google Scholar] [CrossRef]
- Fathi, M. A short proof of quantitative stability for the Heisenberg–Pauli–Weyl inequality. Nonlin. Anal. 2021, 210, 112403. [Google Scholar] [CrossRef]
- Trifonov, D.A. Generalizations of Heisenberg uncertainty relation. Eur. Phys. J. B 2002, 29, 349–353. [Google Scholar] [CrossRef]
- Przanowski, M.; Turrubiates, F.J. Uncertainty relations in deformation quantization. J. Phys. A Math. Gen. 2002, 35, 10643–10661. [Google Scholar] [CrossRef]
- Chen, B.; Cao, N.-P.; Fei, S.-M.; Long, G.-L. Variance-based uncertainty relations for incompatible observables. Quantum Inf. Proc. 2016, 15, 3909–3917. [Google Scholar] [CrossRef]
- Pati, A.K.; Sahu, P.K. Sum uncertainty relation in quantum theory. Phys. Lett. A 2007, 367, 177–181. [Google Scholar] [CrossRef]
- Chen, B.; Fei, S.-M. Sum uncertainty relations for arbitrary N incompatible observables. Sci. Rep. 2015, 5, 14238. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.-C.; Li, J.-L.; Peng, G.-X.; Qiao, C.-F. A stronger multi-observable uncertainty relation. Sci. Rep. 2017, 7, 44764. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-X.; Wang, H.; Li, J.-L.; Song, Q.-C.; Qiao, C.-F. Tight N-observable uncertainty relations and their experimental demonstrations. Sci. Rep. 2019, 9, 5687. [Google Scholar] [CrossRef]
- Wu, J.-F.; Zhang, Q.-H.; Fei, S.-M. Parameterized multi-observable sum uncertainty relations. Eur. Phys. J. Plus 2023, 138, 287. [Google Scholar] [CrossRef]
- Simon, R.; Sudarshan, E.C.G.; Mukunda, N. Gaussian-Wigner distributions in quantum mechanics and optics. Phys. Rev. A 1987, 36, 3868–3880. [Google Scholar] [CrossRef]
- Simon, R.; Mukunda, N.; Dutta, B. Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. Phys. Rev. A 1994, 49, 1567–1583. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G.; Chiu, C.B.; Bhamathi, G. Generalized uncertainty relations and characteristic invariants for the multimode states. Phys. Rev. A 1995, 52, 43–54. [Google Scholar] [CrossRef]
- Williamson, J. On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 1936, 58, 141–163. [Google Scholar] [CrossRef]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978; Appendix 6. [Google Scholar]
- Simon, R.; Chaturvedi, S.; Srinivasan, V. Congruences and canonical forms for a positive matrix: Application to the Schweinler–Wigner extremum principle. J. Math. Phys. 1999, 40, 3632–3642. [Google Scholar] [CrossRef]
- Serafini, A. Multimode uncertainty relations and separability of continuous variable states. Phys. Rev. Lett. 2006, 96, 110402. [Google Scholar] [CrossRef] [PubMed]
- Serafini, A. Detecting entanglement by symplectic uncertainty relations. J. Opt. Soc. Am. B 2007, 24, 347–354. [Google Scholar] [CrossRef]
- Trifonov, D.A. Robertson intelligent states. J. Phys. A Math. Gen. 1997, 30, 5941–5957. [Google Scholar] [CrossRef]
- Dodonov, V.V. Universal integrals of motion and universal invariants of quantum systems. J. Phys. A Math. Gen. 2000, 33, 7721–7738. [Google Scholar] [CrossRef]
- Dodonov, V.V. Uncertainty relations for several observables via the Clifford algebras. J. Phys. Conf. Ser. 2019, 1194, 012028. [Google Scholar] [CrossRef]
- Efimov, S.P. Mathematical formulation of indeterminacy relations. Sov. Phys. J. 1976, 18, 340–343. [Google Scholar] [CrossRef]
- Boerner, H. Representations of Groups; North-Holland: Amsterdam, The Netherlands, 1970; pp. 284–288. [Google Scholar]
- Hile, G.N.; Lounesto, P. Matrix representations of Clifford algebras. Lin. Algebra Applic. 1990, 128, 51–63. [Google Scholar] [CrossRef]
- Okubo, S. Real representations of finite Clifford algebras. I. Classification. J. Math. Phys. 1991, 32, 1657–1668. [Google Scholar] [CrossRef]
- Hrubeš, P. On families of anticommuting matrices. Lin. Algebra Applic. 2016, 493, 494–507. [Google Scholar] [CrossRef]
- Hillery, M. Amplitude-square squeezing of the electromagnetic field. Phys. Rev. A 1987, 36, 3796–3802. [Google Scholar] [CrossRef]
- Tóth, G.; Simon, C.; Cirac, J.I. Entanglement detection based on interference and particle counting. Phys. Rev. A 2003, 68, 062310. [Google Scholar] [CrossRef]
- Urizar-Lanz, I.; Tóth, G. Number-operator-annihilation-operator uncertainty as an alternative for the number-phase uncertainty relation. Phys. Rev. A 2010, 81, 052108. [Google Scholar] [CrossRef]
- Hradil, Z.; Řeháček, J.; de la Hoz, P.; Leuchs, G.; Sánchez-Soto, L.L. Extremal states for photon number and quadratures as gauges for nonclassicality. Phys. Rev. A 2015, 91, 042128. [Google Scholar] [CrossRef]
- Adam, P.; Mechler, M.; Szalay, V.; Koniorczyk, M. Intelligent states for a number-operator-annihilation-operator uncertainty relation. Phys. Rev. A 2014, 89, 062108. [Google Scholar] [CrossRef]
- Kechrimparis, S.; Weigert, S. Universality in uncertainty relations for a quantum particle. J. Phys. A Math. Theor. 2016, 49, 355303. [Google Scholar] [CrossRef]
- Kechrimparis, S.; Weigert, S. Corrigendum: Universality in uncertainty relations for a quantum particle. J. Phys. A Math. Theor. 2025, 58, 119501. [Google Scholar] [CrossRef]
- Kechrimparis, S.; Weigert, S. Heisenberg uncertainty relation for three canonical observables. Phys. Rev. A 2014, 90, 062118. [Google Scholar] [CrossRef]
- Synge, J.L. Geometrical approach to the Heisenberg uncertainty relation and its generalization. Proc. R. Soc. Lond. A 1971, 325, 151–156. [Google Scholar]
- Bagarello, F. Uncertainty relation for non-Hermitian operators. J. Phys. A Math. Theor. 2023, 56, 425201. [Google Scholar] [CrossRef]
- Dodonov, V.V. Uncertainty relations for two observables coupled with the third one. Int. J. Quant. Inf. 2017, 15, 1740015. [Google Scholar] [CrossRef]
- Dass, N.D.H.; Qureshi, T.; Sheel, A. Minimum uncertainty and entanglement. Int. J. Mod. Phys. B 2013, 27, 1350068. [Google Scholar] [CrossRef]
- Zheng, X.; Ma, S.-Q.; Zhang, G.-F.; Fan, H.; Liu, W.-M. Unified and exact framework for variance-based uncertainty relations. Sci. Rep. 2020, 10, 150. [Google Scholar] [CrossRef] [PubMed]
- Dodonov, V.V. Variance uncertainty relations without covariances for three and four observables. Phys. Rev. A 2018, 97, 022105. [Google Scholar] [CrossRef]
- Lian, P. Uncertainty principles on Clifford modules. Acta. Math. Sin.-Engl. Ser. 2024, 40, 2537–2570. [Google Scholar] [CrossRef]
- Song, Q.-C.; Qiao, C.-F. Stronger Schrödinger-like uncertainty relations. Phys. Lett. A 2016, 380, 2925–2930. [Google Scholar] [CrossRef]
- Liang, X.-B.; Li, B.; Huang, L.; Ye, B.-L.; Fei, S.-M.; Huang, S.-X. Optimal approximations of available states and a triple uncertainty relation. Phys. Rev. A 2020, 101, 062106. [Google Scholar] [CrossRef]
- Liang, X.-B.; Li, B.; Fei, S.-M. Signifying quantum uncertainty relations by optimal observable sets and the tightest uncertainty constants. Sci. China-Phys. Mech. Astron. 2024, 67, 290311. [Google Scholar] [CrossRef]
- Vitagliano, G.; Fadel, M.; Apellaniz, I.; Kleinmann, M.; Lücke, B.; Klempt, C.; Tóth, G. Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles. Quantum 2023, 7, 914. [Google Scholar] [CrossRef]
- Liu, Z.-J.; Zhou, J.; Qiang, H.-N.; Xie, M.; Chen, J.-L. Uncertainty relations for the triple components of canonical momentum. Phys. Scr. 2025, 100, 045113. [Google Scholar] [CrossRef]
- Rivas, A.; Luis, A. Characterization of quantum angular-momentum fluctuations via principal components. Phys. Rev. A 2008, 77, 022105. [Google Scholar] [CrossRef]
- Shabbir, S.; Björk, G. SU(2) uncertainty limits. Phys. Rev. A 2016, 93, 052101. [Google Scholar] [CrossRef]
- Carruthers, P.; Nieto, M.M. Phase and angle variables in quantum mechanics. Rev. Mod. Phys. 1968, 40, 411–440. [Google Scholar] [CrossRef]
- Hradil, Z.; Řehaček, J.; Klimov, A.B.; Rigas, I.; Sánchez-Soto, L.L. Angular performance measure for tighter uncertainty relations. Phys. Rev. A 2010, 81, 014103. [Google Scholar] [CrossRef]
- Marchiolli, M.A.; Ruzzi, M. Theoretical formulation of finite-dimensional discrete phase spaces: I. Algebraic structures and uncertainty principles. Ann. Phys. 2012, 327, 1538–1561. [Google Scholar] [CrossRef]
- Marchiolli, M.A.; Mendonça, P.E.M.F. Theoretical formulation of finite-dimensional discrete phase spaces: II. On the uncertainty principle for Schwinger unitary operators. Ann. Phys. 2013, 336, 76–97. [Google Scholar] [CrossRef]
- Ivan, J.S.; Mukunda, N.; Simon, R. Moments of non-Gaussian Wigner distributions and a generalized uncertainty principle: I. The single-mode case. J. Phys. A Math. Theor. 2012, 45, 195305. [Google Scholar] [CrossRef]
- Lee, C.-W.; Ryu, J.; Bang, J.; Nha, H. Inseparability criterion using higher-order Schrödinger–Robertson uncertainty relation. J. Opt. Soc. Am. B 2014, 31, 656–663. [Google Scholar] [CrossRef]
- Bojowald, M.; Guglielmon, J.; van Kuppeveld, M. Moments and saturation properties of eigenstates: Oscillator systems. Phys. Rev. D 2021, 103, 126005. [Google Scholar] [CrossRef]
- Hillery, M.; O’Connell, R.F.; Scully, M.O.; Wigner, E.P. Distribution functions in physics: Fundamentals. Phys. Rep. 1984, 106, 121–167. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Evolution of multidimensional systems. Magnetic properties of ideal gases of charged particles. In Invariants and the Evolution of Nonstationary Quantum Systems; Proceedings of Lebedev Physics Institute; Markov, M.A., Ed.; Nova Science: Commack, NY, USA, 1989; Volume 183, pp. 263–414. [Google Scholar]
- Dodonov, V.V.; Man’ko, O.V. Universal invariants of quantum-mechanical and optical systems. J. Opt. Soc. Am. A 2000, 17, 2403–2410. [Google Scholar] [CrossRef]
- Alekseev, P.S.; Moroseev, F.V. A new form of symplectically invariant multimode uncertainty relations. J. Russ. Laser Res. 2011, 32, 311–316. [Google Scholar] [CrossRef]
- Simon, R. Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 2000, 84, 2726–2729. [Google Scholar] [CrossRef]
- Marian, P.; Marian, T.A.; Scutaru, H. Inseparability of mixed two-mode Gaussian states generated with a SU(1,1) interferometer. J. Phys. A Math. Theor. 2001, 34, 6969–6980. [Google Scholar]
- Lukš, A.; Peřinová, V. Entropy of shifted Gaussian states. Czechosl. J. Phys. 1989, 39, 392–407. [Google Scholar] [CrossRef]
- Kechrimparis, S.; Weigert, S. Geometry of uncertainty relations for linear combinations of position and momentum. J. Phys. A Math. Theor. 2018, 51, 025303. [Google Scholar] [CrossRef]
- Chen, B.; Lian, P. Uncertainty relations for multiple operators without covariances. J. Phys. A Math. Theor. 2022, 55, 095303. [Google Scholar] [CrossRef]
- Li, J.-L.; Qiao, C.-F. Reformulating the quantum uncertainty relation. Sci. Rep. 2015, 5, 12708. [Google Scholar] [CrossRef]
- Yao, Y.; Xiao, X.; Wang, X.; Sun, C.P. Implications and applications of the variance-based uncertainty equalities. Phys. Rev. A 2015, 91, 062113. [Google Scholar] [CrossRef]
- Abbott, A.A.; Alzieu, P.-L.; Hall, M.J.W.; Branciard, C. Tight state-independent uncertainty relations for qubits. Mathematics 2016, 4, 8. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, G.F. Variance-based uncertainty relation for incompatible observers. Quantum Inf. Process. 2017, 16, 167. [Google Scholar] [CrossRef]
- Vourdas, A. Uncertainty relations in terms of the Gini index for finite quantum systems. Europhys. Lett. 2020, 130, 20003. [Google Scholar] [CrossRef]
- Zheng, X.; Ma, S.; Zhang, G. Multi-observable uncertainty equality based on the sum of standard deviations in the qubit system. Quantum Inf. Process. 2020, 19, 116. [Google Scholar] [CrossRef]
- Vasudevrao, S.; Reena, I.; Usha Devi, A.R.; Sudha; Rajagopal, A.K. Sum uncertainty relations: Uncertainty regions for qubits and qutrits. Int. J. Theor. Phys. 2021, 60, 1523–1538. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, S.; Fei, S.-M.; Wu, J. Uncertainty regions of observables and state-independent uncertainty relations. Quantum Inf. Process. 2021, 20, 357. [Google Scholar] [CrossRef]
- Xiao, Y.; Jing, N.; Yu, B.; Fei, S.-M.; Li-Jost, X. Near-optimal variance-based uncertainty relations. Front. Phys. 2022, 10, 846330. [Google Scholar] [CrossRef]
- Mayumi, A.; Kimura1, G.; Ohno, H.; Chruściński, D. Uncertainty relations based on a state-dependent norm of a commutator. Phys. Rev. A 2024, 110, 062215. [Google Scholar] [CrossRef]
- Massar, S.; Spindel, P. Uncertainty relation for the discrete Fourier transform. Phys. Rev. Lett. 2008, 100, 190401. [Google Scholar] [CrossRef]
- Hall, M.J.W.; Pati, A.K.; Wu, J. Products of weak values: Uncertainty relations, complementarity, and incompatibility. Phys. Rev. A 2016, 93, 052118. [Google Scholar] [CrossRef]
- Bagchi, S.; Pati, A.K. Uncertainty relations for general unitary operators. Phys. Rev. A 2016, 94, 042104. [Google Scholar] [CrossRef]
- Bong, K.-W.; Tischler, N.; Patel, R.B.; Wollmann, S.; Pryde, G.J.; Hall, M.J.W. Strong unitary and overlap uncertainty relations: Theory and experiment. Phys. Rev. Lett. 2018, 120, 230402. [Google Scholar] [CrossRef]
- Yu, B.; Jing, N.; Li-Jost, X. Strong unitary uncertainty relations. Phys. Rev. A 2019, 100, 022116. [Google Scholar] [CrossRef]
- Li, J.; Zhang, S.; Liu, L.; Bai, C.-M. An improved bound for strong unitary uncertainty relations with refined sequence. Laser Phys. Lett. 2020, 17, 015201. [Google Scholar] [CrossRef]
- Hu, X.; Jing, N. Improved unitary uncertainty relations. Quantum Inf. Process. 2022, 21, 52. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Markovich, L.A. Malevich’s suprematist composition picture for spin states. Entropy 2019, 21, 870. [Google Scholar] [CrossRef]
- de la Peña-Auerbach, L.; Cetto, A.M. Stronger form for the position-momentum uncertainty relation. Phys. Lett. A 1972, 39, 65–66. [Google Scholar] [CrossRef]
- de Falco, D.; De Martino, S.; De Siena, S. Position-momentum uncertainty in stochastic mechanics. Phys. Rev. Lett. 1982, 49, 181–183. [Google Scholar] [CrossRef]
- Golin, S. Uncertainty relations in stochastic mechanics. J. Math. Phys. 1985, 26, 2781–2783. [Google Scholar] [CrossRef]
- Illuminati, F.; Viola, L. Stochastic variational approach to minimum uncertainty states. J. Phys. A Math. Gen. 1995, 28, 2953–2961. [Google Scholar] [CrossRef]
- Sukhanov, A.D. Schrodinger uncertainty relations and physical features of correlated-coherent states. Theor. Math. Phys. 2002, 132, 1277–1294. [Google Scholar] [CrossRef]
- Garbaczewski, P. Indeterminacy relations in random dynamics. Rep. Math. Phys. 2007, 60, 289–297. [Google Scholar] [CrossRef]
- Trifonov, D.A.; Nikolov, B.A.; Mladenov, I.M. On the uncertainty relations in stochastic mechanics. J. Geom. Symm. Phys. 2009, 16, 57–75. [Google Scholar]
- Skála, L.; Čížek, J.; Kapsa, V. Quantum mechanics as applied mathematical statistics. Ann. Phys. 2011, 326, 1174–1188. [Google Scholar] [CrossRef]
- Budiyono, A. Objective uncertainty relation with classical background in a statistical model. Phys. A 2013, 392, 43–47. [Google Scholar] [CrossRef]
- Skála, L. Internal structure of the Heisenberg and Robertson–Schrödinger uncertainty relations. Int. J. Theor. Phys. 2013, 52, 3393–3404. [Google Scholar] [CrossRef]
- Skála, L.; Kapsa, V. Two multi-dimensional uncertainty relations. J. Phys. A Math. Theor. 2008, 41, 265302. [Google Scholar] [CrossRef]
- Skála, L.; Kapsa, V. Heisenberg uncertainty relations can be replaced by stronger ones. Int. J. Quant. Chem. 2009, 109, 1626–1630. [Google Scholar] [CrossRef]
- Skála, L. Internal structure of the Heisenberg and Robertson–Schrödinger uncertainty relations: Multidimensional generalization. Phys. Rev. A 2013, 88, 042118. [Google Scholar] [CrossRef]
- Hall, M.J.W. Exact Heisenberg uncertainty relations. Phys. Rev. A 2001, 64, 052103. [Google Scholar] [CrossRef]
- Schervish, M.J. Theory of Statistics; Springer: New York, NY, USA, 1995; pp. 111, 301–306, 613. [Google Scholar]
- Stam, A.J. Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 1959, 2, 101–112. [Google Scholar] [CrossRef]
- Fisher, R.A. Theory of statistical estimation. Math. Proc. Camb. Phil. Soc. 1925, 22, 700–725. [Google Scholar] [CrossRef]
- Luo, S. Quantum Fisher information and uncertainty relations. Lett. Math. Phys. 2000, 53, 243–251. [Google Scholar] [CrossRef]
- Petz, D. Covariance and Fisher information in quantum mechanics. J. Phys. A Math. Gen. 2002, 35, 929–939. [Google Scholar] [CrossRef]
- Luo, S. Wigner–Yanase skew information and uncertainty relations. Phys. Rev. Lett. 2003, 91, 180403. [Google Scholar] [CrossRef] [PubMed]
- Řehaček, J.; Hradil, Z. Uncertainty relations from Fisher information. J. Mod. Opt. 2004, 51, 979–982. [Google Scholar] [PubMed]
- Gibilisco, P.; Imparato, D.; Isola, T. Uncertainty principle and quantum Fisher information. II. J. Math. Phys. 2007, 48, 072109. [Google Scholar] [CrossRef]
- Tóth, G.; Fröwis, F. Uncertainty relations with the variance and the quantum Fisher information based on convex decompositions of density matrices. Phys. Rev. Res. 2022, 4, 013075. [Google Scholar] [CrossRef]
- Chiew, S.-H.; Gessner, M. Improving sum uncertainty relations with the quantum Fisher information. Phys. Rev. Res. 2022, 4, 013076. [Google Scholar] [CrossRef]
- Gibilisco, P. Uncertainty and quantum variance at the light of quantum information geometry. Inf. Geom. 2024, 7, S293–S302. [Google Scholar] [CrossRef]
- Gibilisco, P.; Imparato, D.; Isola, T. A volume inequality for quantum Fisher information and the uncertainty principle. J. Stat. Phys. 2008, 130, 545–559. [Google Scholar] [CrossRef]
- Gibilisco, P.; Imparato, D.; Isola, T. A Robertson-type uncertainty principle and quantum Fisher information. Lin. Algebra Appl. 2008, 428, 1706–1724. [Google Scholar] [CrossRef]
- Gibilisco, P.; Isola, T. How to distinguish quantum covariances using uncertainty relations. J. Math. Anal. Appl. 2011, 384, 670–676. [Google Scholar] [CrossRef]
- Trifonov, D.A. State extended uncertainty relations. J. Phys. A Math. Gen. 2000, 33, L299–L304. [Google Scholar] [CrossRef]
- Trifonov, D.A. Generalized uncertainty relations and coherent and squeezed states. J. Opt. Soc. Am. A 2000, 17, 2486–2495. [Google Scholar] [CrossRef]
- Trifonov, D.A. Remarks on the extended characteristic uncertainty relations. J. Phys. A Math. Gen. 2001, 34, L75–L78. [Google Scholar] [CrossRef]
- Maccone, L.; Pati, K.A. Stronger uncertainty relations for all incompatible observables. Phys. Rev. Lett. 2014, 113, 260401. [Google Scholar] [CrossRef] [PubMed]
- Leifer, M.S. Uncertainty from the Aharonov–Vaidman identity. Quantum Stud. Math. Found. 2023, 10, 373–397. [Google Scholar] [CrossRef]
- Vaidman, L. Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 1992, 60, 182–183. [Google Scholar] [CrossRef]
- Coelho, A.S.; Costanzo, L.S.; Zavatta, A.; Hughes, C.; Kim, M.S.; Bellini, M. Universal continuous-variable state orthogonalizer and qubit generator. Phys. Rev. Lett. 2016, 116, 110501. [Google Scholar] [CrossRef]
- Mathews, P.M.; Eswaran, K. Semi-coherent states of quantum harmonic oscillator. Nuovo Cim. B 1973, 17, 332–335. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Renó, M.B. Nonclassical properties of ‘semi-coherent’ quantum states. J. Phys. A Math. Gen. 2006, 39, 7411–7422. [Google Scholar] [CrossRef]
- Urbanowski, K. On the weak point of the stronger uncertainty relation. Acad. Quant. 2025, 2, 7557. [Google Scholar] [CrossRef]
- Xiao, Y.; Jing, N.; Li-Jost, X.; Fei, S.-M. Weighted uncertainty relations. Sci. Rep. 2016, 6, 23201. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Jing, N. Mutually exclusive uncertainty relations. Sci. Rep. 2016, 6, 36616. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, Y.; Yu, C.-S. Stronger uncertainty relations with improvable upper and lower bounds. Quantum Inf. Process. 2017, 16, 131. [Google Scholar] [CrossRef]
- Mondal, D.; Bagchi, S.; Pati, A.K. Tighter uncertainty and reverse uncertainty relations. Phys. Rev. A 2017, 95, 052117. [Google Scholar] [CrossRef]
- Zheng, X.; Ji, A.-L.; Zhang, G.-F. Stronger reverse uncertainty relation for multiple incompatible observables. Phys. Scr. 2023, 98, 065113. [Google Scholar] [CrossRef]
- Li, Q.; Ma, S.; Wang, S.; Zheng, X.; Zhang, G. Dynamic investigation of the new quantum-control-assisted reverse uncertainty relation. Physica A 2025, 668, 130566. [Google Scholar] [CrossRef]
- de Guise, H.; Maccone, L.; Sanders, B.C.; Shukla, N. State-independent uncertainty relations. Phys. Rev. A 2018, 98, 042121. [Google Scholar] [CrossRef]
- Giorda, P.; Maccone, L.; Riccardi, A. State-independent uncertainty relations from eigenvalue minimization. Phys. Rev. A 2019, 99, 052121. [Google Scholar] [CrossRef]
- Li, J.-L.; Qiao, C.-F. The generalized uncertainty principle. Ann. Phys. 2021, 533, 2000335. [Google Scholar] [CrossRef]
- Szymański, K.; Zyczkowski, K. Geometric and algebraic origins of additive uncertainty relations. J. Phys. A Math. Theor. 2020, 53, 015302. [Google Scholar] [CrossRef]
- Bhunia, P.; Moslehian, M.S. An improvement of Schrödinger’s uncertainty relation. Phys. Lett. A 2025, 552, 130663. [Google Scholar] [CrossRef]
- Bargmann, V. Note on some integral inequalities. Helv. Phys. Acta 1972, 45, 249–257. [Google Scholar]
- Faris, W.G. Inequalities and uncertainty principles. J. Math. Phys. 1978, 19, 461–466. [Google Scholar] [CrossRef]
- Husimi, K.; Ôtuka, M. Miscellanea in elementary quantum mechanics, III. Prog. Theor. Phys. 1953, 10, 173–190. [Google Scholar] [CrossRef]
- de Bruijn, N.G. Uncertainty principles in Fourier analysis. In Inequalities; Shisha, O., Ed.; Academic: New York, NY, USA, 1967; pp. 57–71. [Google Scholar]
- Yue, W.; Janmin, L. Bounds to atomic electron momentum density. Phys. Scr. 1984, 30, 414. [Google Scholar] [CrossRef]
- Gadre, S.R.; Chakravorty, S.J. Some rigorous inequalities among the Weizsacker correction and atomic 〈rn〉 and 〈pn〉 values. J. Chem. Phys. 1986, 84, 7051–7052. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Cirone, M.A.; Dahl, J.P.; Seligman, T.H.; Straub, F.; Schleich, W.P. Quantum fictitious forces. Fort. Phys. 2002, 50, 599–607. [Google Scholar] [CrossRef]
- Dehesa, J.S.; Puertas-Centeno, D. Multidimensional hydrogenic states: Position and momentum expectation values. J. Phys. B At. Mol. Opt. Phys. 2021, 54, 065006. [Google Scholar] [CrossRef]
- Angulo, J.C. Generalized position-momentum uncertainty products: Inclusion of moments with negative order and application to atoms. Phys. Rev. A 2011, 83, 062102. [Google Scholar] [CrossRef]
- Baumgartner, B. A class of lower bounds for Hamiltonian operators. J. Phys. A Math. Gen. 1979, 12, 459–467. [Google Scholar] [CrossRef]
- Exner, P. Generalized Bargmann inequalities. Rep. Math. Phys. 1984, 19, 249–255. [Google Scholar] [CrossRef]
- Sánchez-Moreno, P.; González-Férez, R.; Dehesa, J.S. Improvement of the Heisenberg and Fisher-information-based uncertainty relations for D-dimensional central potentials. New J. Phys. 2006, 8, 330. [Google Scholar] [CrossRef]
- Bracher, C. Uncertainty relations for angular momentum eigenstates in two and three spatial dimensions. Am. J. Phys. 2011, 79, 313–319. [Google Scholar] [CrossRef]
- Rudnicki, L. Heisenberg uncertainty relation for position and momentum beyond central potentials. Phys. Rev. A 2012, 85, 022112. [Google Scholar] [CrossRef]
- Shirokov, M.I. Cauchy inequality and uncertainty relations for mixed states. Int. J. Theor. Phys. 2006, 45, 147–157. [Google Scholar] [CrossRef]
- Stoler, D.; Newman, S. Minimum uncertainty and density matrices. Phys. Lett. A 1972, 38, 433–434. [Google Scholar] [CrossRef]
- Fano, U. Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 1957, 29, 74–93. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I. Density matrices and Wigner functions of quasiclassical quantum systems. In Group Theory, Gravitation and Elementary Particle Physics; Proceedings of Lebedev Physics Institute; Komar, A.A., Ed.; Nova Science: Commack, NY, USA, 1987; Volume 167, pp. 7–101. [Google Scholar]
- Bastiaans, M.J. Uncertainty principle for partially coherent light. J. Opt. Soc. Am. 1983, 73, 251–255. [Google Scholar] [CrossRef]
- Dodonov, V.V. Purity- and entropy-bounded uncertainty relations for mixed quantum states. J. Opt. B Quantum Semiclass. Opt. 2002, 4, S98–S108. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, O.V. Universal invariants of paraxial optical beams. In Group Theoretical Methods in Physics, Proceedings of the Third Seminar, Yurmala, Latvia, 22–24 May 1985; Dodonov, V.V., Markov, M.A., Man’ko, V.I., Eds.; VNU Science Press: Utrecht, The Netherlands, 1986; Volume 2, pp. 523–530. [Google Scholar]
- Chountasis, S.; Vourdas, A. Weyl and Wigner functions in an extended phase-space formalism. Phys. Rev. A 1998, 58, 1794–1798. [Google Scholar] [CrossRef]
- Papoulis, A. Ambiguity function in Fourier optics. J. Opt. Soc. Am. 1974, 64, 779–788. [Google Scholar] [CrossRef]
- Ponomarenko, S.A.; Wolf, E. Correlations in open quantum systems and associated uncertainty relations. Phys. Rev. A 2001, 63, 062106. [Google Scholar] [CrossRef]
- Karelin, N.V.; Lazaruk, A.M. Uncertainty relation for multidimensional correlation functions. Theor. Math. Phys. 1998, 117, 1447–1452. [Google Scholar] [CrossRef]
- Karelin, N.V.; Lazaruk, A.M. Structure of the density matrix providing the minimum generalized uncertainty relation for mixed states. J. Phys. A Math. Gen. 2000, 33, 6807–6816. [Google Scholar] [CrossRef]
- Park, Y.M. Improvement of uncertainty relations for mixed states. J. Math. Phys. 2005, 46, 042109. [Google Scholar] [CrossRef]
- Luo, S. Heisenberg uncertainty relation for mixed states. Phys. Rev. A 2005, 72, 042110. [Google Scholar] [CrossRef]
- Wigner, E.P.; Yanase, M.M. Information contents of distributions. Proc. Nat. Acad. Sci. USA 1963, 49, 910–918. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, Z. An informational characterization of Schrödinger’s uncertainty relations. J. Stat. Phys. 2004, 114, 1557–1576. [Google Scholar] [CrossRef]
- Furuichi, S. Schrödinger uncertainty relation with Wigner–Yanase skew information. Phys. Rev. A 2010, 82, 034101. [Google Scholar] [CrossRef]
- Yanagi, K. Uncertainty relation on Wigner-Yanase-Dyson skew information. J. Math. Anal. Appl. 2010, 365, 12–18. [Google Scholar] [CrossRef]
- Furuichi, S.; Yanagi, K. Schrödinger uncertainty relation, Wigner–Yanase–Dyson skew information and metric adjusted correlation measure. J. Math. Anal. Appl. 2012, 388, 1147–1156. [Google Scholar] [CrossRef]
- Kosaki, H. Matrix trace inequalities related to uncertainty principle. Int. J. Math. 2005, 16, 629–645. [Google Scholar] [CrossRef]
- Yanagi, K.; Furuichi, S.; Kuriyama, K. A generalized skew information and uncertainty relation. IEEE Trans. Inf. Theory 2005, 51, 4401–4404. [Google Scholar] [CrossRef]
- Li, D.; Li, X.; Wang, F.; Huang, H.; Li, X.; Kwek, L.C. Uncertainty relation of mixed states by means of Wigner–Yanase–Dyson information. Phys. Rev. A 2009, 79, 052106. [Google Scholar] [CrossRef]
- Chen, B.; Fei, S.-M.; Long, G.-L. Sum uncertainty relations based on Wigner–Yanase skew information. Quantum Inf. Process. 2016, 15, 2639–2648. [Google Scholar] [CrossRef]
- Fan, Y.J.; Cao, H.X.; Meng, H.X.; Chen, L. An uncertainty relation in terms of generalized metric adjusted skew information and correlation measure. Quantum Inf. Process. 2016, 15, 5089–5106. [Google Scholar] [CrossRef]
- Chen, Z.L.; Liang, L.L.; Li, H.J.; Wang, W.H. Two generalized Wigner–Yanase skew information and their uncertainty relations. Quantum Inf. Process. 2016, 15, 5107–5118. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; Wang, J.; Li-Jost, X.; Fei, S.-M. Uncertainty relations based on modified Wigner–Yanase–Dyson skew information. Int. J. Theor. Phys. 2020, 59, 704–718. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, T.; Jing, N. Uncertainty relations based on Wigner–Yanase skew information. Commun. Theor. Phys. 2020, 72, 075101. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, T.; Yan, F. Tighter uncertainty relations based on Wigner–Yanase skew information for observables and channels. Phys. Lett. A 2021, 387, 127029. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Wu, J.-F.; Fei, S.-M. A note on uncertainty relations of arbitrary N quantum channels. Laser Phys. Lett. 2021, 18, 095204. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Fei, S.-M. Tighter sum uncertainty relations via variance and Wigner–Yanase skew information for N incompatible observables. Quantum Inf. Process. 2021, 20, 384. [Google Scholar] [CrossRef]
- Xu, C.; Wu, Z.; Fei, S.-M. Sum uncertainty relations based on (α, β, γ) weighted Wigner–Yanase–Dyson skew information. Int. J. Theor. Phys. 2022, 61, 185. [Google Scholar] [CrossRef]
- Chen, B.; Lian, P. Geometric uncertainty relations on Wigner–Yanase skew information. J. Phys. A Math. Theor. 2023, 56, 275301. [Google Scholar] [CrossRef]
- Li, H.; Gao, T.; Yan, F. Tighter sum uncertainty relations via metric-adjusted skew information. Phys. Scr. 2023, 98, 015024. [Google Scholar] [CrossRef]
- Hu, X.; Jing, N. Uncertainty relations for metric adjusted skew information and Cauchy–Schwarz inequality. Laser Phys. Lett. 2023, 20, 085202. [Google Scholar] [CrossRef]
- Hu, X.; Hu, N.; Yu, B.; Jing, N. Enhanced quantum channel uncertainty relations by skew information. Quantum Inf. Process. 2023, 22, 365. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Wu, J.-F.; Fei, S.-M. A note on Wigner–Yanase skew information-based uncertainty of quantum channels. Quantum Inf. Process. 2023, 22, 456. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, X.; Guo, Q. Tighter uncertainty relations based on Wigner–Yanase skew information for N quantum channels. Laser Phys. Lett. 2024, 21, 105204. [Google Scholar] [CrossRef]
- Zhang, Q.-H.; Fei, S.-M. Wigner–Yanase skew information-based uncertainty relations for quantum channels. Eur. Phys. J. Plus 2024, 139, 137. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Q.-H.; Fei, S.-M. The summation and product forms of uncertainty relations based on metric-adjusted skew information. Quantum Inf. Process. 2024, 23, 252. [Google Scholar] [CrossRef]
- Xu, C.; Wu, Z.; Fei, S.-M. Tighter sum uncertainty relations via (α, β, γ) weighted Wigner–Yanase–Dyson skew information. Commun. Theor. Phys. 2024, 76, 035102. [Google Scholar] [CrossRef]
- Sahil. State-dependent and state-independent uncertainty relations for skew information and standard deviation. Phys. Scr. 2024, 99, 115125. [Google Scholar] [CrossRef]
- Mandilara, A.; Cerf, N.J. Quantum uncertainty relation saturated by the eigenstates of the harmonic oscillator. Phys. Rev. A 2012, 86, 030102(R). [Google Scholar] [CrossRef]
- Mandilara, A.; Karpov, E.; Cerf, N.J. Purity- and Gaussianity-bounded uncertainty relations. J. Phys. A Math. Theor. 2014, 47, 045302. [Google Scholar] [CrossRef]
- Baek, K.; Nha, H. Non-Gaussianity and entropy-bounded uncertainty relations: Application to detection of non-Gaussian entangled states. Phys. Rev. A 2018, 98, 042314. [Google Scholar] [CrossRef]
- Genoni, M.G.; Paris, M.G.A.; Banaszek, K. Measure of the non-Gaussian character of a quantum state. Phys. Rev. A 2007, 76, 042327. [Google Scholar] [CrossRef]
- Ivan, J.S.; Kumar, M.S.; Simon, R. A measure of non-Gaussianity for quantum states. Quantum Inf. Process. 2012, 11, 853–872. [Google Scholar] [CrossRef]
- Ghiu, I.; Marian, P.; Marian, T.A. Measures of non-Gaussianity for one-mode field states. Phys. Scr. 2013, T153, 014028. [Google Scholar] [CrossRef]
- Park, J.; Lee, J.; Ji, S.-W.; Nha, H. Quantifying non-Gaussianity of quantum-state correlation. Phys. Rev. A 2017, 96, 052324. [Google Scholar] [CrossRef]
- Xiang, S.-H.; Zhao, Y.-J.; Xiang, C.; Wen, W.; Long, X.-W. A method for efficiently estimating non-Gaussianity of continuous-variable quantum states. Eur. Phys. J. D 2020, 74, 16. [Google Scholar] [CrossRef]
- Fu, S.; Luo, S.; Zhang, Y. Quantifying non-Gaussianity of bosonic fields via an uncertainty relation. Phys. Rev. A 2020, 101, 012125. [Google Scholar] [CrossRef]
- de Freitas, M.C.; Dodonov, V.V. Non-Gaussianity of Four-Photon Superpositions of Fock States. Quantum Rep. 2021, 3, 350–365. [Google Scholar] [CrossRef]
- Kim, M.S.; Bužek, V.; Kim, M.G. Generation of phase-sensitive nonclassical effects via decay of light into a phase-insensitive environment. Phys. Lett. A 1994, 186, 283–288. [Google Scholar] [CrossRef]
- Marian, P.; Marian, T.A. Generalized characteristic functions for a single-mode radiation field. Phys. Lett. A 1997, 230, 276–282. [Google Scholar] [CrossRef]
- Verma, A.; Pathak, A. Generalized structure of higher order nonclassicality. Phys. Lett. A 2010, 374, 1009–1020. [Google Scholar] [CrossRef]
- Namiki, R. Photonic families of non-Gaussian entangled states and entanglement criteria for continuous-variable systems. Phys. Rev. A 2012, 85, 062307. [Google Scholar] [CrossRef]
- Mandal, K.; Verma, A. Higher-order nonclassicality in photon added and subtracted qudit states. Ann. Phys. 2020, 532, 2000286. [Google Scholar] [CrossRef]
- Laiho, K.; Dirmeier, T.; Schmidt, M.; Reitzenstein, S.; Marquardt, C. Measuring higher-order photon correlations of faint quantum light: A short review. Phys. Lett. A 2022, 435, 128059. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R. Higher-order squeezing of both quadrature components in superposition of orthogonal even coherent state and vacuum state. Rep. Math. Phys. 2024, 94, 73–82. [Google Scholar] [CrossRef]
- Hirschman, I.I., Jr. A Note on Entropy. Am. J. Math. 1957, 79, 152–156. [Google Scholar] [CrossRef]
- Cowling, M.G.; Price, J.F. Bandwidth versus time concentration: The Heisenberg–Pauli–Weyl inequality. SlAM J. Math. Anal. 1984, 15, 151–165. [Google Scholar] [CrossRef]
- Brizuela, D. Statistical moments for classical and quantum dynamics: Formalism and generalized uncertainty relations. Phys. Rev. D 2014, 90, 085027. [Google Scholar] [CrossRef]
- Lynch, R.; Mavromatis, H.A. Nth (even)-order minimum uncertainty products. J. Math. Phys. 1990, 31, 1947–1951. [Google Scholar] [CrossRef]
- Shchukin, E.; van Loock, P. Higher-order Einstein-Podolsky-Rosen correlations and inseparability conditions for continuous variables. Phys. Rev. A 2016, 93, 032114. [Google Scholar] [CrossRef]
- Lynch, R. Simultaneous fourth-order squeezing of both quadrature components. Phys. Rev. A 1994, 49, 2800–2805. [Google Scholar] [CrossRef]
- Rath, B. An interesting new revelation on simultaneous higher order squeezing in an electro-magnetic field. Prog. Theor. Phys. 2001, 105, 697–705. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R. Simultaneous higher-order Hong and Mandel’s squeezing of both quadrature components in orthogonal even coherent state. Optik 2013, 124, 2229–2233. [Google Scholar] [CrossRef]
- de Freitas, M.C.; Meireles, V.D.; Dodonov, V.V. Minimal products of coordinate and momentum uncertainties of high orders: Significant and weak high-order squeezing. Entropy 2020, 22, 980. [Google Scholar] [CrossRef]
- Hach III, E.E.; Gerry, C.C. Four photon coherent states. Properties and generation. J. Mod. Opt. 1992, 39, 2501–2517. [Google Scholar] [CrossRef]
- Souza Silva, A.L.; Mizrahi, S.S.; Dodonov, V.V. Effect of phase-sensitive reservoir on the decoherence of pair-cat coherent states. J. Russ. Laser Res. 2001, 22, 534–544. [Google Scholar] [CrossRef]
- Zurek, W.H. Sub-Planck structure in phase space and its relevance for quantum decoherence. Nature 2001, 412, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Lee, C.-W.; Nha, H.; Kaszlikowski, D. Quantum phase estimation using a multi-headed cat state. J. Opt. Soc. Am. B 2015, 32, 1186–1192. [Google Scholar] [CrossRef]
- Majernik, V.; Richterek, L. Entropic uncertainty relations. Eur. J. Phys. 1997, 18, 79–89. [Google Scholar] [CrossRef]
- De Nicola, S.; Fedele, R.; Man’ko, M.A.; Man’ko, V.I. New uncertainty relations for tomographic entropy: Application to squeezed states and solitons. Eur. Phys. J. B 2006, 52, 191–198. [Google Scholar] [CrossRef]
- Man’ko, M.A. Entropic inequalities in classical and quantum domains. Phys. Scr. 2010, 82, 038109. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Rudnicki, L. Entropic uncertainty relations in quantum physics. In Statistical Complexity, Applications in Electronic Structure; Sen, K.D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–34. [Google Scholar]
- Jizba, P.; Dunningham, J.A.; Joo, J. Role of information theoretic uncertainty relations in quantum theory. Ann. Phys. 2015, 355, 87–114. [Google Scholar] [CrossRef]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef]
- Rastegin, A.E. On entropic uncertainty relations in the presence of a minimal length. Ann. Phys. 2017, 382, 170–180. [Google Scholar] [CrossRef]
- Hertz, A.; Cerf, N.J. Continuous-variable entropic uncertainty relations. J. Phys. A Math. Theor. 2019, 52, 173001. [Google Scholar] [CrossRef]
- Wang, D.; Ming, F.; Hu, M.-L.; Ye, L. Quantum-memory-assisted entropic uncertainty relations. Ann. Phys. 2019, 531, 1900124. [Google Scholar] [CrossRef]
- de Sousa, J.F.; Pires, D.P. Generalized entropic quantum speed limits. Phys. Rev. A 2025, 112, 012203. [Google Scholar] [CrossRef]
- Rastegin, A.E. Uncertainty relations in terms of generalized entropies derived from information diagrams. J. Phys. A Math. Theor. 2025, 58, 285303. [Google Scholar] [CrossRef]
- Deutsch, D. Uncertainty in quantum measurements. Phys. Rev. Lett. 1983, 50, 631–633. [Google Scholar] [CrossRef]
- Partovi, M.N. Entropic formulation of uncertainty for quantum measurements. Phys. Rev. Lett. 1983, 50, 1883–1885. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I. Entropic uncertainty relations. Phys. Lett. A 1984, 103, 253–254. [Google Scholar] [CrossRef]
- Srinivas, M.D. Entropic formulation of uncertainty relations for successive measurements. Pramana 1985, 24, 673–684. [Google Scholar] [CrossRef]
- Rudnicki, L. Majorization approach to entropic uncertainty relations for coarse-grained observables. Phys. Rev. A 2015, 91, 032123. [Google Scholar] [CrossRef]
- Rastegin, A.E. On generalized entropies and information-theoretic Bell inequalities under decoherence. Ann. Phys. 2015, 355, 241–257. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. New entropic inequalities and hidden correlations in quantum suprematism picture of qudit states. Entropy 2018, 20, 692. [Google Scholar] [CrossRef]
- Riccardi, A.; Chesi, G.; Macchiavello, C.; Maccone, L. Tight bounds from multiple-observable entropic uncertainty relations. Ann. Phys. 2024, 536, 2400020. [Google Scholar] [CrossRef]
- Hardy, G.H. A theorem concerning Fourier transforms. J. Lond. Math. Soc. 1933, 8, 227–231. [Google Scholar] [CrossRef]
- de Gosson, M.; Luef, F. Quantum states and Hardy’s formulation of the uncertainty principle: A symplectic approach. Lett. Math. Phys. 2007, 80, 69–82. [Google Scholar] [CrossRef]
- Fernández-Bertolin, A.; Malinnikova, E. Dynamical versions of Hardy’s uncertainty principle: A survey. Bull. Am. Math. Soc. 2021, 58, 357–375. [Google Scholar] [CrossRef]
- Knutsen, H. Notes on Hardy’s uncertainty principle for the Wigner distribution and Schrödinger evolutions. J. Math. Anal. Appl. 2023, 525, 127116. [Google Scholar] [CrossRef]
- Fuchs, W.H.J. On the magnitude of Fourier transforms. In Proceedings of the International Congress of Mathematicians, Amsterdam, The Netherlands, 2–9 September 1954; Gerretsen, J.C.H., de Groot, J., Eds.; North Holland: Amsterdam, The Netherlands, 1954. [Google Scholar]
- Landau, H.J.; Pollak, H.O. Prolate spheroidal wave functions, Fourier analysis and uncertainty, II. Bell Syst. Tech. J. 1961, 40, 65–84. [Google Scholar] [CrossRef]
- Price, J.F. Inequalities and local uncertainty principles. J. Math. Phys. 1983, 24, 1711–1714. [Google Scholar] [CrossRef]
- Lévy-Leblond, J.M. Local Heisenberg inequalities. Phys. Lett. A 1985, 111, 353–355. [Google Scholar] [CrossRef]
- Hilgevoord, J.; Uffink, J.B.M. Overall width, mean peak width and the uncertainty principle. Phys. Lett. A 1983, 95, 474–476. [Google Scholar] [CrossRef]
- Uffink, J.B.M.; Hilgevoord, J. Uncertainty principle and uncertainty relations. Found. Phys. 1985, 15, 925–944. [Google Scholar] [CrossRef]
- Schürmann, T.; Hoffmann, I. A closer look at the uncertainty relation of position and momentum. Found. Phys. 2009, 39, 958–963. [Google Scholar] [CrossRef]
- Schürmann, T.; Hoffmann, I.; Görlich, W. On the experimental verification of the uncertainty principle of position and momentum. Phys. Lett. A 2023, 470, 128787. [Google Scholar] [CrossRef]
- Lévy-Leblond, J.M. Who is afraid of non-Hermitian operators? A quantum description of angle and phase. Ann. Phys. 1976, 101, 319–341. [Google Scholar] [CrossRef]
- Breitenberger, E. Uncertainty measures and uncertainty relation for angle observables. Found. Phys. 1985, 15, 353–364. [Google Scholar] [CrossRef]
- Lynch, R. The quantum phase problem: A critical review. Phys. Rep. 1995, 256, 367–437. [Google Scholar] [CrossRef]
- Peřinová, V.; Lukš, A.; Peřina, J. Phase in Optics; World Scientific: Singapore, 1998. [Google Scholar]
- Busch, P.; Lahti, P.; Pellonpää, J.-P.; Ylinen, K. Are number and phase complementary observables? J. Phys. A Math. Gen. 2001, 34, 5923–5935. [Google Scholar] [CrossRef]
- Kowalski, K.; Rembieliński, J. On the uncertainty relations and squeezed states for the quantum mechanics on a circle. J. Phys. A Math. Gen. 2002, 35, 1405–1414. [Google Scholar] [CrossRef]
- Trifonov, D.A. On the position uncertainty measure on the circle. J. Phys. A Math. Gen. 2003, 36, 11873–11879. [Google Scholar] [CrossRef]
- Kastrup, H.A. Quantization of the canonically conjugate pair angle and orbital angular momentum. Phys. Rev. A 2006, 73, 052104. [Google Scholar] [CrossRef]
- Przanowski, M.; Garcia-Compeán, H.; Tosiek, J.; Turrubiates, F.J. Uncertainty relations in quantum optics. Is the photon intelligent? Ann. Phys. 2016, 373, 123–144. [Google Scholar] [CrossRef]
- Gazeau, J.-P.; Koide, T. Uncertainty relation for angle from a quantum hydrodynamical perspective. Ann. Phys. 2020, 416, 168159. [Google Scholar] [CrossRef]
- Mišta, L., Jr.; de Guise, H.; Řeháček, J.; Hradil, Z. Angle and angular momentum: Uncertainty relations, simultaneous measurement, and phase-space representation. Phys. Rev. A 2022, 106, 022204. [Google Scholar] [CrossRef]
- Mišta, L., Jr.; Mišta, M.; Hradil, Z. Unifying uncertainties for rotorlike quantum systems. Phys. Rev. A 2024, 110, 032208. [Google Scholar] [CrossRef]
- Aharonov, Y.; Bohm, D. Time in the quantum theory and the uncertainty relation for time and energy. Phys. Rev. 1961, 122, 1649–1658. [Google Scholar] [CrossRef]
- Allcock, G.R. The time of arrival in quantum mechanics. Ann. Phys. 1969, 53, 253–348. [Google Scholar] [CrossRef]
- Bauer, M.; Mello, P.A. The time–energy uncertainty relation. Ann. Phys. 1978, 111, 38–60. [Google Scholar] [CrossRef]
- Busch, P. On the energy–time uncertainty relation. Part I: Dynamical time and time indeterminacy. Found. Phys. 1990, 20, 1–32. [Google Scholar] [CrossRef]
- Muga, J.G.; Sala Mayato, R.; Egusquiza, I.L. (Eds.) Time in Quantum Mechanics; Lecture Notes in Physics; Springer: Berlin/Heidelberg, Germany, 2002; Volume 72. [Google Scholar]
- Hilgevoord, J. Time in quantum mechanics: A story of confusion. Stud. Hist. Philos. Mod. Phys. 2005, 36, 29–60. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Dodonov, A.V. Energy–time and frequency–time uncertainty relations: Exact inequalities. Phys. Scr. 2015, 90, 074049. [Google Scholar] [CrossRef]
- Gabor, D. Theory of communication. Part 1: The analysis of information. J. Inst. Electr. Eng.-Part III Radio Commun. Eng. 1946, 93, 429–441. [Google Scholar] [CrossRef]
- Kay, I.; Silverman, R.A. On the uncertainty relation for real signals. Inform. Control 1957, 1, 64–75. [Google Scholar] [CrossRef]
- Wolf, E. Reciprocity inequalities, coherence time and bandwidth in signal analysis and optics. Proc. Phys. Soc. Lond. 1958, 71, 257–269. [Google Scholar] [CrossRef]
- Hilberg, W.; Rothe, P.G. The general uncertainty relation for real signals in communication theory. Inform. Control 1971, 18, 103–125. [Google Scholar] [CrossRef]
- Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. SIAM J. Appl. Math. 1989, 49, 906–931. [Google Scholar] [CrossRef]
- Kharkevich, A.A. Spectra and Analysis; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Flandrin, P. Separability, positivity, and minimum uncertainty in time–frequency energy distributions. J. Math. Phys. 1998, 39, 4016–4040. [Google Scholar] [CrossRef]
- Loughlin, P.J.; Cohen, L. The uncertainty principle: Global, local, or both? IEEE Trans. Signal Process. 2004, 52, 1218–1227. [Google Scholar] [CrossRef]
- Ricaud, B.; Torrésani, B. A survey of uncertainty principles and some signal processing applications. Adv. Comput. Math. 2013, 40, 629–650. [Google Scholar] [CrossRef]
- Dang, P.; Deng, G.-T.; Qian, T. A sharper uncertainty principle. J. Funct. Anal. 2013, 265, 2239–2266. [Google Scholar] [CrossRef]
- Ghobber, S.; Mejjaoli, H. The generalized Stockwell transform associated with the spherical mean operator and uncertainty principles. Int. J. Geom. Meth. Mod. Phys. 2025, 22, 2550037. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, S.; Tang, Y. Uncertainty principles associated with the multi-dimensional quaternionic offset linear canonical transform. Adv. Appl. Clifford Algebr. 2025, 35, 20. [Google Scholar] [CrossRef]
- Kundu, M.; Mondal, S. Sharper version of uncertainty principles in the framework of quaternion Fourier transform. Int. J. Geom. Meth. Mod. Phys. 2025, 22, 2550159. [Google Scholar] [CrossRef]
- Dades, A.; Daher, R. New uncertainty principles for the free metaplectic wavelet transform. Integral Transform. Spec. Funct. 2025, 1–14. [Google Scholar] [CrossRef]
- Gao, W.B. New uncertainty principles in the linear canonical transform domains based on hypercomplex functions. Axioms 2025, 14, 415. [Google Scholar] [CrossRef]
- Safouane, N.; Achak, A.; Loualid, E.M. Lp-Donoho–Stark principle for Jacobi–Dunkl transform. São Paulo J. Math. Sci. 2025, 19, 9. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Mizrahi, S.S. Strict lower bound for the spatial spreading of a relativistic particle. Phys. Lett. A 1993, 177, 394–398. [Google Scholar] [CrossRef]
- Bracken, A.J.; Melloy, G.F. Localizing the relativistic electron. J. Phys. A Math. Gen. 1999, 32, 6127–6139. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Prystupiuk, A. Heisenberg uncertainty relations for relativistic bosons. Phys. Rev. A 2021, 103, 052211. [Google Scholar] [CrossRef]
- Garay, L.J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 1995, 10, 145–165. [Google Scholar] [CrossRef]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108–1118. [Google Scholar] [CrossRef]
- Bang, J.Y.; Berger, M.S. Quantum mechanics and the generalized uncertainty principle. Phys. Rev. D 2006, 74, 125012. [Google Scholar] [CrossRef]
- Tawfik, A.; Diab, A. Generalized uncertainty principle: Approaches and applications. Int. J. Mod. Phys. D 2014, 23, 1430025. [Google Scholar] [CrossRef]
- Todorinov, V.; Bosso, P.; Das, S. Relativistic generalized uncertainty principle. Ann. Phys. 2019, 405, 92–100. [Google Scholar] [CrossRef]
- Escors, D.; Kochan, G. The uncertainty principle and the minimal space-time length element. Physics 2022, 4, 1230–1240. [Google Scholar] [CrossRef]
- Bizet, N.C.; Obregón, O.; Carpio, W.Y. Energy-time uncertainty relation from entropy measures. Eur. Phys. J. Plus 2025, 140, 159. [Google Scholar] [CrossRef]
- Uffink, J.; van Lith, J. Thermodynamic uncertainty relations. Found. Phys. 1999, 29, 655–692. [Google Scholar] [CrossRef]
- Horowitz, J.M.; Gingrich, T.R. Thermodynamic uncertainty relations constrain non-equilibrium fluctuations. Nat. Phys. 2020, 16, 15–20. [Google Scholar] [CrossRef]
- Holubec, V.; Ryabov, A. Fluctuations in heat engines. J. Phys. A Math. Theor. 2022, 55, 013001. [Google Scholar] [CrossRef]
- Cangemi, L.M.; Bhadra, C.; Levy, A. Quantum engines and refrigerators. Phys. Rep. 2024, 1087, 1–71. [Google Scholar] [CrossRef]
- Lieb, E.H. The stability of matter. Rev. Mod. Phys. 1976, 48, 553–569. [Google Scholar] [CrossRef]
- Dehesa, J.S. Rényi entropies of multidimensional oscillator and hydrogenic systems with applications to highly excited Rydberg states. Entropy 2022, 24, 1590. [Google Scholar] [CrossRef]
- Hofmann, H.F.; Takeuchi, S. Violation of local uncertainty relations as a signature of entanglement. Phys. Rev. A 2003, 68, 032103. [Google Scholar] [CrossRef]
- Giovannetti, V. Separability conditions from entropic uncertainty relations. Phys. Rev. A 2004, 70, 012102. [Google Scholar] [CrossRef]
- de Vicente, J.I.; Sanchez-Ruiz, J. Separability conditions from the Landau–Pollak uncertainty relation. Phys. Rev. A 2005, 71, 052325. [Google Scholar] [CrossRef]
- Dodonov, A.V.; Dodonov, V.V.; Mizrahi, S.S. Separability dynamics of two-mode Gaussian states in parametric conversion and amplification. J. Phys. A Math. Gen. 2005, 38, 683–696. [Google Scholar] [CrossRef]
- Nha, H.; Kim, J. Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras: Detection of non-Gaussian entangled states. Phys. Rev. A 2006, 74, 012317. [Google Scholar] [CrossRef]
- Gühne, O.; Tóth, G. Entanglement detection. Phys. Rep. 2009, 474, 1–75. [Google Scholar] [CrossRef]
- Jackiw, R. Minimum uncertainty product, number-phase uncertainty product, and coherent states. J. Math. Phys. 1968, 9, 339–346. [Google Scholar] [CrossRef]
- Dodonov, V.V. ‘Nonclassical’ states in quantum optics: A ‘squeezed’ review of first 75 years. J. Opt. B Quantum Semiclass. Opt. 2002, 4, R1–R33. [Google Scholar] [CrossRef]
- Pashaev, O.K.; Kocak, A. The Bell-based super-coherent states: Uncertainty relations, golden ratio and fermion-boson entanglement. Int. J. Geom. Meth. Mod. Phys. 2025, 22, 2450267. [Google Scholar] [CrossRef]
- Vorontsov, Y.I. Uncertainty relation and the measurement error - perturbation relation. Phys. Usp. 2005, 48, 999–1013. [Google Scholar] [CrossRef]
- Dressel, J.; Nori, F. Certainty in Heisenberg’s uncertainty principle: Revisiting definitions for estimation errors and disturbance. Phys. Rev. A 2014, 89, 022106. [Google Scholar] [CrossRef]
- Gühne, O.; Haapasalo, E.; Kraft, T.; Pellonpää, J.P.; Uola, R. Incompatible measurements in quantum information science. Rev. Mod. Phys. 2023, 95, 011003. [Google Scholar] [CrossRef]
- Lee, J.; Tsutsui, I. A universal formulation of uncertainty relation for errors. Phys. Lett. A 2024, 526, 129962. [Google Scholar] [CrossRef]
- Sen, D. The uncertainty relations in quantum mechanics. Curr. Sci. 2014, 107, 203–218. [Google Scholar]
n | |||||
---|---|---|---|---|---|
2 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
4 | 9/16 | 1/16 | 0.3857 | 3/8 | 0.4878 |
6 | 225/64 | 81/64 | 0.88 | 81/64 | 2.18 |
8 | 43.07 | 1/256 | 2.38 | 9/4 | 17.18 |
10 | 872.1 | 625/1024 | 7.22 | 225/16 | |
12 | 26,381 | 1.6 | 23.4 | ||
14 | 1,114,592 | 961.5 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dodonov, V.V. Variance-Based Uncertainty Relations: A Concise Review of Inequalities Discovered Since 1927. Quantum Rep. 2025, 7, 34. https://doi.org/10.3390/quantum7030034
Dodonov VV. Variance-Based Uncertainty Relations: A Concise Review of Inequalities Discovered Since 1927. Quantum Reports. 2025; 7(3):34. https://doi.org/10.3390/quantum7030034
Chicago/Turabian StyleDodonov, Viktor V. 2025. "Variance-Based Uncertainty Relations: A Concise Review of Inequalities Discovered Since 1927" Quantum Reports 7, no. 3: 34. https://doi.org/10.3390/quantum7030034
APA StyleDodonov, V. V. (2025). Variance-Based Uncertainty Relations: A Concise Review of Inequalities Discovered Since 1927. Quantum Reports, 7(3), 34. https://doi.org/10.3390/quantum7030034