Evolving Probability Representations of Entangled Cat States in the Potentials of Harmonic and Inverted Oscillators
Abstract
1. Introduction
2. Probability Representations and the Formalism of Dequantizers and Quantizers
2.1. Continuous Dimensional Quantum Systems
2.2. Finite-Dimensional Quantum Systems
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mancini, S.; Man’ko, V.I.; Tombesi, P. Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 1996, 213, 1–6. [Google Scholar] [CrossRef]
- Dodonov, V.; Man’ko, V. Positive distribution description for spin states. Phys. Lett. A 1997, 229, 335–339. [Google Scholar] [CrossRef]
- Man’ko, O. Tomography of spin states and classical formulation of quantum mechanics. In Symmetries in Science X; Springer: Berlin/Heidelberg, Germany, 1998; pp. 207–222. [Google Scholar]
- Ibort, A.; Man’ko, V.I.; Marmo, G.; Simoni, A.; Ventriglia, F. An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 2009, 79, 65013. [Google Scholar] [CrossRef]
- Amosov, G.G.; Korennoy, Y.A.; Man’ko, V.I. Description and measurement of observables in the optical tomographic probability representation of quantum mechanics. Phys. Rev. A 2012, 85, 52119. [Google Scholar] [CrossRef]
- Asorey, M.; Ibort, A.; Marmo, G.; Ventriglia, F. Quantum Tomography twenty years later. Phys. Scr. 2015, 90, 74031. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Probability Representation of Quantum States. Entropy 2021, 23, 549. [Google Scholar] [CrossRef]
- Husimi, K. Some Formal Properties of the Density Matrix. Proc. Phys.-Math. Soc. Jpn. 1940, 22, 264–314. [Google Scholar] [CrossRef]
- Kano, Y. A New Phase-Space Distribution Function in the Statistical Theory of the Electromagnetic Field. J. Math. Phys. 1965, 6, 1913–1915. [Google Scholar] [CrossRef]
- Glauber, R.J. Photon Correlations. Phys. Rev. Lett. 1963, 10, 84–86. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Wigner, E. On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Man’ko, V.I.; Markovich, L.A. Integral transforms between tomogram and quasi-probability functions based on quantizer-dequantizer operators formalism. J. Math. Phys. 2020, 61, 102102. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I.; Marmo, G. Alternative commutation relations, star products and tomography. J. Phys. A Math. Gen. 2002, 35, 699. [Google Scholar] [CrossRef]
- Smithey, D.T.; Beck, M.; Raymer, M.G.; Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 1993, 70, 1244–1247. [Google Scholar] [CrossRef]
- Bertrand, J.; Bertrand, P. A tomographic approach to Wigner’s function. Found. Phys. 1987, 17, 397–405. [Google Scholar] [CrossRef]
- Vogel, K.; Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 1989, 40, 2847–2849. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Leonhardt, U.; Paul, H. Homodyne detection of the density matrix of the radiation field. Phys. Rev. A 1995, 52, R1801–R1804. [Google Scholar] [CrossRef]
- Mauro D’Ariano, G.; Paris, M.G.; Sacchi, M.F. Quantum Tomography. In Advances in Imaging and Electron Physics; Elsevier: Amsterdam, The Netherlands, 2003; Volume 128, pp. 205–308. [Google Scholar] [CrossRef]
- Lvovsky, A.I.; Raymer, M.G. Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 2009, 81, 299–332. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Quantum Oscillator at Temperature T and the Evolution of a Charged-Particle State in the Electric Field in the Probability Representation of Quantum Mechanics. Entropy 2023, 25, 213. [Google Scholar] [CrossRef]
- Ádám, P.; Man’ko, M.A.; Man’ko, V.I. Even and Odd Schrödinger Cat States in the Probability Representation of Quantum Mechanics. J. Russ. Laser Res. 2022, 43, 1–17. [Google Scholar] [CrossRef]
- Man’ko, O.V.; Man’ko, V.I. Inverted Oscillator Quantum States in the Probability Representation. Entropy 2023, 25, 217. [Google Scholar] [CrossRef] [PubMed]
- Chernega, V.N.; Man’ko, O.V. Dynamics of System States in the Probability Representation of Quantum Mechanics. Entropy 2023, 25, 785. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Burgess, C.P.; O’Dell, D.H.J. Duality between the quantum inverted harmonic oscillator and inverse square potentials. New J. Phys. 2024, 26, 053023. [Google Scholar] [CrossRef]
- Yuce, C. Quantum inverted harmonic potential. Phys. Scr. 2021, 96, 105006. [Google Scholar] [CrossRef]
- Gietka, K.; Busch, T. Inverted harmonic oscillator dynamics of the nonequilibrium phase transition in the Dicke model. Phys. Rev. E 2021, 104, 034132. [Google Scholar] [CrossRef]
- Ullinger, F.; Zimmermann, M.; Schleich, W.P. The logarithmic phase singularity in the inverted harmonic oscillator. AVS Quantum Sci. 2022, 4, 24402. [Google Scholar] [CrossRef]
- Subramanyan, V.; Hegde, S.S.; Vishveshwara, S.; Bradlyn, B. Physics of the Inverted Harmonic Oscillator: From the lowest Landau level to event horizons. Ann. Phys. 2021, 435, 168470. [Google Scholar] [CrossRef]
- Cirilo-Lombardo, D.J.; Sanchez, N.G. Coherent states of quantum spacetimes for black holes and de Sitter spacetime. Phys. Rev. D 2023, 108, 126001. [Google Scholar] [CrossRef]
- Gonzalez-Ballestero, C.; Aspelmeyer, M.; Novotny, L.; Quidant, R.; Romero-Isart, O. Levitodynamics: Levitation and control of microscopic objects in vacuum. Science 2021, 374. [Google Scholar] [CrossRef]
- Duchaň, M.; Šiler, M.; Jákl, P.; Brzobohatý, O.; Rakhubovsky, A.; Filip, R.; Zemánek, P. Experimental amplification and squeezing of a motional state of an optically levitated nanoparticle. arXiv 2024, arXiv:2403.04302. [Google Scholar]
- Dago, S.; Rieser, J.; Ciampini, M.A.; Mlynář, V.; Kugi, A.; Aspelmeyer, M.; Deutschmann-Olek, A.; Kiesel, N. Stabilizing nanoparticles in the intensity minimum: Feedback levitation on an inverted potential. Opt. Express 2024, 32, 45133. [Google Scholar] [CrossRef]
- Choi, S.; Onofrio, R.; Sundaram, B. Optimized sympathetic cooling of atomic mixtures via fast adiabatic strategies. Phys. Rev. A 2011, 84, 051601. [Google Scholar] [CrossRef]
- Choi, S.; Onofrio, R.; Sundaram, B. Squeezing and robustness of frictionless cooling strategies. Phys. Rev. A 2012, 86, 043436. [Google Scholar] [CrossRef]
- Choi, S.; Onofrio, R.; Sundaram, B. Ehrenfest dynamics and frictionless cooling methods. Phys. Rev. A 2013, 88, 053401. [Google Scholar] [CrossRef]
- Cunha, M.O.T.; Man’ko, V.I.; Scully, M.O. Quasiprobability and Probability Distributions for Spin-1/2 States. Found. Phys. Lett. 2001, 14, 103–117. [Google Scholar] [CrossRef]
- D’Ariano, G.M.; Maccone, L.; Paini, M. Spin tomography. J. Opt. B Quantum Semiclass. Opt. 2003, 5, 77. [Google Scholar] [CrossRef]
- Chernega, V.N.; Man’ko, O.V.; Man’ko, V.I. Entangled Qubit States and Linear Entropy in the Probability Representation of Quantum Mechanics. Entropy 2022, 24, 527. [Google Scholar] [CrossRef]
- Man’ko, M.A.; Man’ko, V.I. Probability Distributions Describing Qubit-State Superpositions. Entropy 2023, 25, 1366. [Google Scholar] [CrossRef]
- Bužek, V.; Vidiella-Barranco, A.; Knight, P.L. Superpositions of coherent states: Squeezing and dissipation. Phys. Rev. A 1992, 45, 6570–6585. [Google Scholar] [CrossRef]
- Dodonov, V.V.; Man’ko, V.I.; Nikonov, D.E. Even and odd coherent states for multimode parametric systems. Phys. Rev. A 1995, 51, 3328–3336. [Google Scholar] [CrossRef]
- Agarwal, G.; Puri, R.; Singh, R. Atomic Schrödinger cat states. Phys. Rev. A 1997, 56, 2249–2254. [Google Scholar] [CrossRef]
- Brune, M.; Hagley, E.; Dreyer, J.; Maître, X.; Maali, A.; Wunderlich, C.; Raimond, J.M.; Haroche, S. Observing the Progressive Decoherence of the “Meter” in a Quantum Measurement. Phys. Rev. Lett. 1996, 77, 4887–4890. [Google Scholar] [CrossRef] [PubMed]
- Auffeves, A.; Maioli, P.; Meunier, T.; Gleyzes, S.; Nogues, G.; Brune, M.; Raimond, J.M.; Haroche, S. Entanglement of a Mesoscopic Field with an Atom Induced by Photon Graininess in a Cavity. Phys. Rev. Lett. 2003, 91, 230405. [Google Scholar] [CrossRef] [PubMed]
- Neergaard-Nielsen, J.S.; Nielsen, B.M.; Hettich, C.; Mølmer, K.; Polzik, E.S. Generation of a Superposition of Odd Photon Number States for Quantum Information Networks. Phys. Rev. Lett. 2006, 97, 083604. [Google Scholar] [CrossRef]
- Ourjoumtsev, A.; Jeong, H.; Tualle-Brouri, R.; Grangier, P. Generation of optical ‘Schrödinger cats’ from photon number states. Nature 2007, 448, 784–786. [Google Scholar] [CrossRef]
- Takahashi, H.; Wakui, K.; Suzuki, S.; Takeoka, M.; Hayasaka, K.; Furusawa, A.; Sasaki, M. Generation of Large-Amplitude Coherent-State Superposition via Ancilla-Assisted Photon Subtraction. Phys. Rev. Lett. 2008, 101, 233605. [Google Scholar] [CrossRef]
- He, B.; Nadeem, M.; Bergou, J.A. Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 2009, 79, 035802. [Google Scholar] [CrossRef]
- Adam, P.; Darázs, Z.; Kiss, T.; Mechler, M. Double self-Kerr scheme for optical Schrödinger-cat state preparation. Phys. Scr. 2011, T143, 014002. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.; Nha, H.; Jeong, H. Generating a Schrödinger-cat-like state via a coherent superposition of photonic operations. Phys. Rev. A 2012, 85, 63815. [Google Scholar] [CrossRef]
- Bild, M.; Fadel, M.; Yang, Y.; von Lüpke, U.; Martin, P.; Bruno, A.; Chu, Y. Schrödinger cat states of a 16-microgram mechanical oscillator. Science 2023, 380, 274–278. [Google Scholar] [CrossRef]
- van Enk, S.; Hirota, O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 2001, 64, 022313. [Google Scholar] [CrossRef]
- Jeong, H.; Kim, M.S.; Lee, J. Quantum-information processing for a coherent superposition state via a mixedentangled coherent channel. Phys. Rev. A 2001, 64, 052308. [Google Scholar] [CrossRef]
- Cochrane, P.T.; Milburn, G.J.; Munro, W.J. Macroscopically distinct quantum-superposition states as a bosonic code for amplitude damping. Phys. Rev. A 1999, 59, 2631–2634. [Google Scholar] [CrossRef]
- Mirrahimi, M. Cat-qubits for quantum computation. Comptes Rendus Phys. 2016, 17, 778–787. [Google Scholar] [CrossRef]
- Grimm, A.; Frattini, N.E.; Puri, S.; Mundhada, S.O.; Touzard, S.; Mirrahimi, M.; Girvin, S.M.; Shankar, S.; Devoret, M.H. Stabilization and operation of a Kerr-cat qubit. Nature 2020, 584, 205–209. [Google Scholar] [CrossRef]
- Su, Q.P.; Zhang, Y.; Yang, C.P. Single-step implementation of a hybrid controlled-not gate with one superconducting qubit simultaneously controlling multiple target cat-state qubits. Phys. Rev. A 2022, 105, 062436. [Google Scholar] [CrossRef]
- Mogilevtsev, D.; Ya, K.S. The generation of multicomponent entangled Schrödinger cat states via a fully quantized nondegenerate four-wave mixing process. Opt. Commun. 1996, 132, 452–456. [Google Scholar] [CrossRef]
- Vitali, D.; Fortunat, M.; Tombesi, P.; De Martini, F. Generating Entangled Schrödinger Cat States within a Parametric Oscillator. Fortschr. Phys. 2000, 48, 437–446. [Google Scholar] [CrossRef]
- Janszky, J.; Asbóth, J.; Gábris, A.; Vukics, A.; Koniorczyk, M.; Kobayashi, T. Two-mode Schrödinger cats, entanglement and teleportation. Fortschr. Phys. 2003, 51, 157–171. [Google Scholar] [CrossRef]
- Janowicz, M.; Orłowski, A. Decoherence of entangled states in two-mode cavities. J. Phys. B At. Mol. Opt. Phys. 2006, 39, 1763–1771. [Google Scholar] [CrossRef]
- Thenabadu, M.; Reid, M.D. Bipartite Leggett-Garg and macroscopic Bell-inequality violations using cat states: Distinguishing weak and deterministic macroscopic realism. Phys. Rev. A 2022, 105, 052207. [Google Scholar] [CrossRef]
- Zheng, S.B. A scheme for the generation of multi-mode Schrödinger cat states. Quantum Semiclass. Opt. 1998, 10, 691–694. [Google Scholar] [CrossRef]
- Paternostro, M.; Kim, M.S.; Ham, B.S. Generation of entangled coherent states via cross-phase-modulation in a double electromagnetically induced transparency regime. Phys. Rev. A 2003, 67, 023811. [Google Scholar] [CrossRef]
- Zhou, L.; Xiong, H. A macroscopical entangled coherent state generator in a V configuration atom system. J. Phys. B At. Mol. Opt. Phys. 2008, 41, 025501. [Google Scholar] [CrossRef]
- Liu, T.; Su, Q.P.; Xiong, S.J.; Liu, J.M.; Yang, C.P.; Nori, F. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Sci. Rep. 2016, 6, 32004. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.Y.; Reinhold, P.; Heeres, R.W.; Ofek, N.; Chou, K.; Axline, C.; Reagor, M.; Blumoff, J.; Sliwa, K.M.; et al. A Schrödinger cat living in two boxes. Science 2016, 352, 1087–1091. [Google Scholar] [CrossRef]
- Guo, R.; Zhou, L.; Gu, S.P.; Wang, X.F.; Sheng, Y.B. Generation of concatenated Greenberger–Horne–Zeilinger-type entangled coherent state based on linear optics. Quantum Inf. Proc. 2017, 16, 68. [Google Scholar] [CrossRef]
- Zhong, Z.R.; Huang, X.J.; Yang, Z.B.; Shen, L.T.; Zheng, S.B. Generation and stabilization of entangled coherent states for the vibrational modes of a trapped ion. Phys. Rev. A 2018, 98, 032311. [Google Scholar] [CrossRef]
- Xiong, B.; Li, X.; Chao, S.L.; Yang, Z.; Zhang, W.Z.; Zhou, L. Generation of entangled Schrödinger cat state of two macroscopic mirrors. Opt. Express 2019, 27, 13547. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Gneiting, C.; You, J.Q.; Nori, F. Generating and detecting entangled cat states in dissipatively coupled degenerate optical parametric oscillators. Phys. Rev. A 2021, 104, 013715. [Google Scholar] [CrossRef]
- Wang, X. Quantum teleportation of entangled coherent states. Phys. Rev. A 2001, 64, 022302. [Google Scholar] [CrossRef]
- Joo, J.; Ginossar, E. Efficient scheme for hybrid teleportation via entangled coherent states in circuit quantum electrodynamics. Sci. Rep. 2016, 6, 26338. [Google Scholar] [CrossRef] [PubMed]
- Chao-Ping, W.; Hu, X.Y.; Yu, Y.F.; Zhang, Z.M. Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states. Chin. Phys. B 2016, 25, 040601. [Google Scholar] [CrossRef]
- Ralph, T.C.; Gilchrist, A.; Milburn, G.J.; Munro, W.J.; Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 2003, 68, 042319. [Google Scholar] [CrossRef]
- Liao, J.Q.; Huang, J.F.; Tian, L. Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A 2016, 93, 033853. [Google Scholar] [CrossRef]
- Mechler, M.; Man’ko, M.A.; Man’ko, V.I.; Adam, P. Even and Odd Cat States of Two and Three Qubits in the Probability Representation of Quantum Mechanics. Entropy 2024, 26, 485. [Google Scholar] [CrossRef]
- Kenfack, A.; Zyczkowski, K. Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 2004, 6, 396–404. [Google Scholar] [CrossRef]
- Hudson, R. When is the wigner quasi-probability density non-negative? Rep. Math. Phys. 1974, 6, 249–252. [Google Scholar] [CrossRef]
- Soto, F.; Claverie, P. When is the Wigner function of multidimensional systems nonnegative? J. Math. Phys. 1983, 24, 97–100. [Google Scholar] [CrossRef]
- Arkhipov, A.S. Tomography for Several Particles with One Random Variable. J. Russ. Laser Res. 2003, 24, 237–255. [Google Scholar] [CrossRef]
- Amosov, G.G.; Man’ko, V.I. A classical limit for the center-of-mass tomogram in view of the central limit theorem. Phys. Scr. 2009, 80, 025006. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechler, M.; Man’ko, M.A.; Man’ko, V.I.; Adam, P. Evolving Probability Representations of Entangled Cat States in the Potentials of Harmonic and Inverted Oscillators. Quantum Rep. 2025, 7, 23. https://doi.org/10.3390/quantum7020023
Mechler M, Man’ko MA, Man’ko VI, Adam P. Evolving Probability Representations of Entangled Cat States in the Potentials of Harmonic and Inverted Oscillators. Quantum Reports. 2025; 7(2):23. https://doi.org/10.3390/quantum7020023
Chicago/Turabian StyleMechler, Matyas, Margarita A. Man’ko, Vladimir I. Man’ko, and Peter Adam. 2025. "Evolving Probability Representations of Entangled Cat States in the Potentials of Harmonic and Inverted Oscillators" Quantum Reports 7, no. 2: 23. https://doi.org/10.3390/quantum7020023
APA StyleMechler, M., Man’ko, M. A., Man’ko, V. I., & Adam, P. (2025). Evolving Probability Representations of Entangled Cat States in the Potentials of Harmonic and Inverted Oscillators. Quantum Reports, 7(2), 23. https://doi.org/10.3390/quantum7020023